HEINRICH HEINE
UNIVERSITÄT DÜSSELDORF

Studies on ABC Transporters from Human Liver in Heterologous Expression Systems

Inaugural-Dissertation

zur Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine Universität Düsseldorf

vorgelegt von

> Jan Stindt

aus Kiel

Studies on ABC Transporters from Human Liver in Heterologous Expression Systems

Inaugural-Dissertation

zur Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine Universität Düsseldorf

vorgelegt von
Jan Stindt
aus Kiel

Düsseldorf, im Dezember 2010

Aus dem Institut für Biochemie der Heinrich-Heine-Universität Düsseldorf

Gedruckt mit der Genehmigung der Mathematisch- Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf.

Referent: Prof. Dr. Lutz Schmitt
Koreferent: PD Dr. Ulrich Schulte

Tag der mündlichen Prüfung:
»...hier können wir die Hände bis an den Ellenbogen in das stecken, was man Abenteuer nennt.«

- Miguel de Cervantes (1605) El ingenioso hidalgo Don Quixote de la Mancha

Summary

Today, the physiological function of canalicular export systems of the human liver in detoxification, bile generation and secretion is clearly defined. Most membrane proteins taking part in this function are members of the ATP binding cassette (ABC) transporter family and perform primary active substrate transport energized by ATP hydrolysis. On a molecular level, little knowledge exists about the relation between mutations in these membrane proteins and the diseases they are associated with. Convenient in vivo systems are limited and cannot answer many questions of molecular function. To gain mechanistic insights into both wild type and mutated transporters, in vitro systems are indispensible that are of a very limited availability.

The aim of this thesis was to establish suitable in vitro systems for human ABC transporters that are expressed in the apical membrane of polarized hepatocytes. Here, the human bile salt export pump (BSEP, ABCB11) and the multidrug resistance protein 3 (MDR3, ABCB4) play an important role in bile secretion, and their malfunction is associated with severe hereditary diseases like Progressive Hereditary Intrahepatic Cholestasis (PFIC) type 2 and 3. Heterologous overexpression is a vital necessity for in vitro studies, because membrane proteins, especially those from human, are quite unstable and of rather low abundance in their native tissue. In contrast to mammalian cell culture, the yeasts Saccharomyces cerevisiae and Pichia pastoris provide comparatively easy and wellcharacterized expression systems for polytopic membrane proteins. A challenge associated with BSEP and MDR3 is the instability of their coding sequences in Escherichia coli that has been a strong limiting factor in previous studies on both, and especially on clinically relevant mutations in these, as the latter are not easily generated. The results of this thesis can be summarized as follows:
I) The first-time heterologous expression in S. cerevisiae yeast of both human BSEP and MDR3 was achieved, both chromosomally and from plasmid. For the low-expressing BSEP, an expression screen was devised that did not lead to an improved expression. The compatible osmolyte glycerol was found to function as a chemical chaperone for BSEP, leading to an estimated twofold increase in expression. For MDR3 it was found that the his tag position had a dramatic impact on expression levels.
II) In S. cerevisiae, the C-terminally his-tagged MDR3 could be expressed at a level comparable to MDR1 which yields milligram amounts per litre of culture. Human MDR3 could be detergentsolubilized and purified to amounts that for the first time allowed its detection on a Coomassie-stained SDS-PAGE gel.
III) The yield of BSEP could be improved substantially by switching the expression host from S. cerevisiae to P. pastoris.
IV) In order to establish expression in both yeast systems, a complete workflow was designed and implemented that allows the cloning of the unstable BSEP and MDR3 coding sequences without the use of E. coli. Instead, the cloning strategy can completely rely on the powerful homologous recombination machinery of S. cerevisiae. The workflow includes a new site-directed mutagenesis procedure that is also independent of E. coli usage and enables the rapid recreation of clinically relevant BSEP and MDR3 mutations in both mammalian cell culture and the yeast expression systems. This has previously been a complicated and time-consuming procedure as the attempt to introduce targeted mutations regularly led to random deletions within the constructs.

As a result of this work, clinically relevant mutants of BSEP and MDR3 are now generated much faster, and several BSEP variants are currently being studied in mammalian cell culture and in vitro.

Zusammenfassung

Die physiologische Funktion kanalikulärer Transportsysteme in der menschlichen Leber ist heute klar definiert. Die Mehrheit der beteiligten Membranproteine gehören zur Familie der ATP-Bindekassette (ABC)-Transporter und vermitteln den primär-aktiven Transport ihrer Substrate unter ATP-Hydrolyse. Auf molekularer Ebene sind die Beziehungen zwischen Mutationen in diesen Membranproteinen und den damit assoziierten Krankheiten noch weitgehend unverstanden. In vivo-Systeme sind für die Untersuchung vieler Fragestellungen auf molekularer Ebene ungeeignet. Um mechanistische Einblicke in die Funktionsweise von Wildtyp als auch mutierten Transportern zu erlangen, werden in vitro-Systeme benötigt.

Ziel dieser Doktoarbeit war, geeignete in vitro-Systeme für humane ABC-Transporter bereitzustellen, die in der kanalikulären Membran der Hepatozyten lokalisiert sind. Die Gallensalzexportpumpe (BSEP, ABCB11) und das Multidrogenresistenzprotein 3 (MDR3, ABCB4) nehmen wichtige Rollen bei der Sekretion von Gallenbestandteilen ein. Ihre Fehlfunktion ist mit schweren erblichen Erkrankungen wie der Progressiven Familiären Intrahepatischen Cholestase (PFIC) Typ 2 und 3 verbunden. Ihre heterologe Überexpression ist eine wichtige Voraussetzung für in vitro-Studien, da Membranproteine recht instabil sind und in inrem nativem Gewebe oft nur in geringer Menge vorkommen. Im Gegensatz zu Säugetierzellkultur sind die beiden Hefen Saccharomyces cerevisiae und Pichia pastoris leicht handzuhabende und gut charakterisierte Expressionssysteme für Membranproteine. Eine Herausforderung in bezug auf BSEP und MDR3 ist die Instabilität der kodierenden DNS-Sequenzen in Escherichia coli, die in vorherigen Studien ein limitierender Faktor war. Speziell Studien an Transportermutationen gestalten sich schwierig, da die Mutagenese der kodierenden Sequenzen stark erschwert ist. Die Ergebnisse dieser Doktorarbeit können wie folgt zusammengefaßt werden:
I) Die erstmalige heterologe Expression von BSEP und MDR3 in Bäckerhefe gelang sowohl chromosomal als auch plasmidgebunden. Da hier die Expression von BSEP nur sehr gering war, wurde ein Expressionstest verschiedener Promotoren durchgeführt, der zu keiner Expressionssteigerung führte. Der Zusatz von Glycerin, einem kompatiblen Osmolyten, zu den Hefekulturen bewirkte eine zweifache Expressionssteigerung von BSEP. Glycerin diente hier als eine chemische Faltungshilfe. Für MDR3 wurde gezeigt, daß die Position des Histidin-Affinitätsanhängsels die Expression signifikant beeinflußte.
II) Ein carboxyterminal mit einem Histidin-Affinitätsanhängsel fusioniertes MDR3 konnte in Bäckerhefe in Mengen exprimiert werden, die mit denen hier für humanes MDR1 erzielten vergleichbar sind. MDR3 konnte mit Detergenzien solubilisiert und anschließend in Mengen aufgereinigt werden, die erstmalig die Detektion auf einem mit Coomassie-Farbstoff gefärbten SDS-Proteingel ermöglichten.
III) Die Ausbeute an rekombinantem BSEP konnte durch Wechsel des Expressionssystems von der Bäckerhefe auf die methylotrophe Hefe Pichia pastoris deutlich erhöht werden. Aus diesem kann BSEP jetzt in präparativen Mengen solubilisiert und aufgereinigt werden.
IV) Zur Etablierung der Expression in beiden Hefesystemen wurde ein kompletter Arbeitsablauf realisiert, der die Klonierung der instabilen kodierenden DNS-Sequenzen von BSEP und MDR3 ohne E. coli ermöglicht. Die Strategie macht sich stattdessen die effiziente Maschinerie von S. cerevisiae zur homologen Rekombination von DNS-Sequenzen zunutze. Der Arbeitsablauf beinhalted außerdem eine neue Methode zur zielgerichteten DNS-Mutagenese, die ebenfalls ohne E. coli funktioniert und die schnelle Herstellung klinisch relevanter BSEP- und MDR3-Mutationen sowohl in Säugetierzellkulur
als auch in den Hefeexpressionssystemen ermöglicht. Dieses war bisher sehr zeitaufwendig, da die Einführung von Mutationen auf DNS-Ebene regelmäßig zu zufälligen Deletionen in den Konstrukten führte.

Aufgrund dieser Arbeit können klinisch relevante Mutationen in beiden Transportproteinen nun ungleich schneller und leichter realisiert werden, und diverse BSEP-Varianten werden derzeit sowohl in Zellkultur als auch in vitro untersucht.

Summary of Contents

Summary I
Zusammenfassung II
Summary of Contents IV
1 Introduction 1
1.1 Membrane Transport 1
1.2 ATP Binding Cassette Transporters - the Largest Family of Primary Active Transporters 2
1.3 Structure and Function of ABC transporters 3
1.4 The Human ABC Transporter Superfamily 11
1.5 Active Transport and Detoxification Processes in the Liver 14
1.6 The Role of Human Hepatic ABC Transporters in Bile Formation 19
1.7 Eukaryotic Expression Systems for Human ABC Transporters 21
Aims and Objectives 23
2 Materials and Methods 24
2.1 Materials 24
2.2 Methods 36
3 Results 63
3.1 The BSEP and MDR3 cDNA Sequences are unstable in E. coli 63
3.2 A Set of Cassette Vectors for the Chomosomal Overexpression of both yeast and non-yeast genes in Saccharomyces cerevisiae 65
3.3 Expression in S. cerevisiae of the Human Bile Salt Export Pump and Multidrug Resistance Protein 3 by Use of Homologous Recombination 72
3.4 Expression of BSEP and MDR3 from Plasmid in S. cerevisiae 77
3.5 A Recombination-Based Expression Plasmid Screen for BSEP 82
3.6 The Use of the Compatible Solute Glycerol as a Chemical Chaperone to Increase BSEP Expression in S. cerevisiae 89
3.7 Subcellular Localization of Human BSEP and MDR3 in S. cerevisiae 92
3.8 Testing for a Cellular Resistance Phenotype of BSEP and MDR3 in S. cerevisiae 93
3.9 Initial Purification of Human BSEP and MDR3 from S. cerevisiae 101
3.10 Moving Expression of BSEP from S. cerevisiae to Pichia pastoris 106
3.11 The Site-Directed Mutagenesis of Human BSEP by a New, E. coli-Independent Approach. 110
3.12 Rapid Site-Directed Mutagenesis and Expression Analysis of a Yeast-Enabled Mammalian BSEP Expression Vector 115
4 Discussion 117
4.1 The Impact of Affinity Tag Position on the MDR3 Fusion Protein demonstrates the Empirical Value of Expression Screens 117
4.2 Overexpression of Human BSEP 119
4.3 Further Steps towards In Vitro Studies of BSEP and MDR3 120
4.4 Lack of a Cellular Phenotype of BSEP Expression in S. cerevisiae 121
4.5 The M800I Variant of MDR3 122
4.6 Lack of MRP2 Expression in S. cerevisiae 124
4.7 DNA Cloning and Manipulation in S. cerevisiae 125
Outlook 133
References 134
Abbreviations 150
Danksagung 153
Erklärung 155
Lebenslauf 156

1 Introduction

Cells have evolved compartments of distinct and regulated composition [1]. Biological membranes, which are selectively permeable barriers, keep these various compartments separate from each another and also segregate the interior of the cell from the extracellular environment. These membranes are composed of a lipid bilayer, which due to its hydrophobic nature is a barrier to charged, hydrophilic, and large molecules. Only very small hydrophobic or neutral compounds such as oxygen and carbon dioxide can permeate such a bilayer, while the diffusion of other molecules such as metal ions or metabolites and enzymes away from their point of biogenesis, function, and turnover is limited. In contrast, cellular membranes permit the selective uptake und accumulation of diverse nutrients, while secreting metabolic waste products. Across each of these membranes, the directional and selective transport of a wide variety of both macro- and micromolecules is carried out [2,3].

1.1 Membrane Transport

This selective and highly regulated transport is mediated by integral membrane proteins [1]. These or domains of these membrane proteins reside in the lipid bilayer by presenting hydrophobic and aromatic side chains at the protein-lipid interface. Here, they facilitate the transmembrane passage of the most diverse substances [4,5,6]. For example, aquaporins, large alpha barrell membrane proteins, are highly selective channels for water molecules that allow their quick diffusion across the membrane [7]. Carrier proteins bind and shield the charges of their substrate to facilitate its passive diffusion across the membrane. Secondary active transporters that transport molecule "a" are driven by the concentration gradient of molecule "b" across a membrane. Other membrane proteins in turn create and maintain this concentration gradient which then can then be used to fuel the co-transport of another compound against its own concentration gradient. Symporters either transport their substrate in the same, antiporters in the opposite direction of the energy-providing molecule gradient.

Primary active transporters, that establish these energizing gradients, are often fueled by the hydrolysis of adenosine triphosphate (ATP). The phosphodiester bond within this molecule contains 57 kilojoules per mol of Gibbs free energy stored in the covalent linkage of the gamma to the beta phosphate, a phosphoric acid
anhydride [8]. The yeast plasma membrane ATPase Pmal is a primary active transporter that uses this energy to create a proton gradient from the exterior to the cytosol $[9,10,11]$. The sodium potassium pump is another ATP-dependent primary transporter [12,13]. It is an electrogenic pump as it generates a membrane surface charge separation and helps create the plasma membrane resting potential that is vital for e. g. signal transduction by neuronal cells [1]. The action of the sodium potassium pump also fuels secondary active transport processes and plays a role in cell volume regulation. Apart from ATP, redox energy (the mitochondrial electron transport chain) or light (bacteriorhodopsin [14], and the photosystems of the thylakoid membranes in chloroplasts) can serve to fuel primary active transport across biological membranes [1].

1.2 ATP Binding Cassette Transporters - the Largest Family of Primary Active Transporters

ATP binding cassette (ABC) transporters are probably the largest group of primary active membrane transporters [15]. In 1982 the group of Giovanna Ames cloned the first ABC transporter gene, the histidine permease from Escherichia coli [16]. Today, 78 ABC-encoding genes are described within its genome [17], 31 in the yeast Saccharomyces cerevisiae [18] and 48 in human [19,20]. ABC transporters are old in evolutionary terms as they are found in archaea, eubacteria, in plant and animal eukaryotes [21]. Sequence analyses indicate that while about 4% of all genes in Escherichia coli and Bacillus subtilis encode membrane proteins, 2% of the genome, or half the membrane protein genes, encode ABC transporters [22]. They function as im- or exporters of an astonishing variety of substrates, both natural and synthetic, ranging from heavy metal ions or small molecules like sugars, amino acids, vitamins, osmolytes or short peptides to xenobiotics, antifungals and drugs to whole proteins [15]. Some recognize a single specific substrate, while others bind and translocate a wide variety of in part chemically diverse substrates [23,24,25]. Members of the latter group such as the multidrug resistance protein 1 (MDR1 or P-glycoprotein, P-gp), the breast cancer resistance protein (BCRP), and multidrug resistance associated protein (MRP) 1 are the main cause of chemotherapy (multidrug) resistance of cancer cells [26,27].

1.3 Structure and Function of ABC transporters

Domain organization of $A B C$ transporters

A functional ABC transporter consists of two nucleotide binding domains (NBDs) and two transmembrane domains (TMDs, Figure 1). The two TMDs interact as homo- or heterodimers to form a passage through a membrane and thus facilitate the transport of various substrates which in turn is energized by the ATPase activity of the two NBDs. In archaea and eubacteria, the different transporter components are usually encoded by separate genes (Figure 1, upper and middle panel). Importers and exporters can readily be discriminated by virtue of sequence analysis. Only importers contain the highly conserved EAA motif in an intracellular loop of their TMDs which most likely interacts with a specific region of the NBD [28,29]. ABC importers containing this motif are found in archaeal and bacterial organisms only. Here, the substrate first interacts with its cognate substrate binding protein (SBP), which is another exclusive feature of $A B C$ import systems. In Gram-positive bacteria, this is additionaly anchored to the cytoplasmic membrane by a lipid moiety where it acquires substrate molecules and directs them to the TMDs. Anchoring to the plasma membrane by a short, transmembrane alpha helix has been found exclusively in archaea until now [30]. In eukaryotic genomes, one NBD and and one TMD occur as one fused gene, e. g. TMD-NBD (termed half-size transporter), or the complete functional unit is encoded by one structural gene, e. g. (TMD-NBD) ${ }_{2}$ (termed full-size transporter; Figure 1, lower panel) [21]. The organization of domain elements can be either (TMD-NBD) ${ }_{2}$ (regular) or (NBD-TMD) ${ }_{2}$ (inverse topology) and additional transmembrane segments have been described in addition to the core helices of MRP-type ABC transporters like the multidrug resistance-associated protein 2 [30,31,32].

ABC Protein Family Characteristics and the Nucleotide Binding Domains

All ABC proteins share highly conserved sequence motifs within their NBD (see Figure 2) [33]. The P-loop, also termed the Walker A motif (consensus sequence GXXGX(G)KST, X for any amino acid residue), the Walker B motif ($\phi \phi \phi \phi \mathrm{D}, \phi$ for any hydrophobic residue) and the C-loop or ABC signature motif (LSGGQ) between these two are specific for the NBD $[21,34]$.

Figure 1. The domain organization of different $A B C$ transporter systems. The functional unit of an ABC transporter consists of two TMDs and two NBDs. These can be fused onto a single polypeptide chain in full-size transporters. One TMD and NBD are fused to each other in half-size transporters, and all four subunits can also be encoded by separate genes. This is only encountered in prokaryotes. ABC importers bind their cognate substrate binding protein (SBP), which in gram-negative bacteria is contained in the periplasmatic space by the outer membrane. In gram-positive organisms, this is either anchored in the membrane by a lipid moiety or a transmembrane segment (exclusive to archaea). Adapted from [30].

After these core ABC motifs comes the D-loop (SALD), and C-terminal to that is a conserved histidine residue essential for ATP hydrolysis [35]. These motifs reflect structural features of the NBD and conserved functions in vivo: the Walker A motif/Ploop constitutes a loop binding the phosphate moiety of ATP [36]. Walker B is part of a beta sheet and participates in the coordination of the catalytically important Mg^{2+} cation.

Figure 2. Crystal structure of the haemolysin B NBD dimer. Left The dimer of the H662A variant of the HlyB NBD is shown with bound ATP (stick molecules) and Mg^{2+} (green spheres). For ease of viewing, the two NBDs are individually coloured. Conserved motifs are marked in different colours on the left NBD. Both NBD monomers contribute to each of the ATP binding sites with the Walker A and B motif residing on one and the C-loop on the opposite NBD. Through its coordination by these three motifs in the two sites, ATP functions as a "molecular glue" in the process of NBD dimerization [35,37,38]. Right View of the yellow HlyB NBD monomer from the interface plane. The L-shaped architecture of the two arm domains is shown. Both bound ATP molecules and both Mg^{2+} ions are indicated as calotte models and spheres, respectively. Adapted from [35].

It plays an important role in the hydrolysis of the anhydride bond between the gamma- and beta-phosphate. The Q-loop serves as a gamma-phosphate sensor [35]. It is generally hypothesized that during hydrolysis both NBDs at least transiently form a dimer [39]. Solved structures of the DNA repair enzyme Rad50, the HlyB-NBD ATP-bound dimer [35], and the full-length vitamin B_{12} transporter BtuCD show that the ATP binding pockets are formed by the Walker A and B of one NBD and the signature motif of the opposite NBD [40,41]. Here, the serine residue of the C-loop is in close contact with the gamma-phosphate of the bound ATP [42]. ATPase domains of $A B C$ transporters show similarity to the F_{1}-ATPase [43] and RecA [44]. The structure of the NBD is that of an L-shape (Figure 2, right side): the larger domain
(arm I) has structural homology to RecA and other nucleotide binding proteins and consists of alpha helices and beta strands (alpha/beta fold). It contains the Walker A, B motifs and the Q-, H- and D-loop described above (left side). The smaller domain (arm II) exclusively consists of alpha helices and contains the ABC signature motif or C-loop. All atomic structures solved so far show the same overall architecture. Comparison of structures solved with bound ATP [35,45,46,47,48] to those with bound Mg/ADP [47,49,50,51,52] suggests the release of hydrolysis products by a rotational movement of arm II. How exactly binding and hydrolysis of ATP are coupled to transport remains yet to be elucidated.

The transmembrane domains

While NBDs share an average 30 \% of amino acid sequence identity, the same does not apply to the highly diverse TMDs. The high sequence conservation among NBDs suggests a common mode of providing and transferring chemical energy derived from ATP hydrolysis to the variable TMD units. Still, the sequence heterogeneity of the TMDs is generally assumed to reflect the wide spectrum of the various substrates that differ as much in structure, shape and size as their respective cognate TMDs.

Studies on both bacterial and mammalian ABC transporters and hydrophobicity plots argue in favor of six transmembrane helices per TMD as a general core functional unit. The six-helices architecture was confirmed by solving full-length transporter structures such as the bacterial lipid flippase MsbA [53], the SAV1866 putative MDR pump [54], and more recently, the mouse P-glycoprotein (the murine homologue of the human MDR1 multidrug efflux pump [55]). In contrast, other hydrophobicity plots of mostly eukaryotic transporters such as the transporter associated with antigen processing (TAP), a half-size heterodimer, predict a composition of 10 (TAP1) and 9 (TAP2) transmembrane helices, respectively [31,32]. Deletion studies have shown that the C-terminal six transmembrane helices of both TAP TMDs form an essential channel complex while the others are not engaged in its formation [31,56]. Instead, the additional three and four helices of the ER-resident TAP heterodimer have been proposed to facilitate the binding of tapasin (TAP ASsociated protelN), the central interface component in the peptide loading complex (PLC), that recruits empty MHC class I heterodimers to TAP for loading with peptides derived from the proteasome on the cytosolic side. Here, the additional component helices function as interaction modules for other molecules engaged in the same
pathway [31,32]. More importantly, the crystal structure of the vitamin B_{12} transporter BtuCD clearly showed ten TM helices in each TMD [41], indicating that additional TMD architectures exist. Functions of NBD and TMD in ATP hydrolyis, substrate recognition and transport are, however, not always mutually exclusive, as was shown for the haemolysin transport complex of uropathogenic E. coli. Here, the substrate HlyA was shown to interact with the NBD of HlyB [57].

The catalytic cycle of the NBDs and its coupling to substrate transport

Several functional mechanisms have been postulated for ABC transporters. A general working mechanism for substrate transport by membrane pumps was postulated already in 1966 by Jardetzky [58]. In this model, a transporter can in general assume two basic conformations: one that is open towards one side, and one that is open towards the other side of the membrane. As a result, the substrate binding site is accessible from only one side of the membrane at a time (Figure 3).

Figure 3. The Alternating Access Model of ABC transporter function. Already suggested by Jardetzky in 1966 [58] as a principal mode of operation for membrane pumps, this mechanism can also be postulated from the currently available structural data. Left The mouse P-gp structure [55] displays a large cavity accessable from both cytosol and inner membrane leaflet. Right The Sav1866 structure [54] represents an outward open conformation with potential access to the outer membrane leaflet. Adapted from [23].

Two available crystal structures of ABC exporters are thought to represent both alternate, either inward (mouse P-gp, left side) or outward open (Sav1866, right side) conformations $[54,55]$. On the premise of the alternating access concept, the "ATP Switch" [39] and "Processive Clamp" [59] models of substrate transport have been described. In the first model, the binding of two ATP molecules is the switch that induces dimerization of the NBDs and, upon hydrolysis of both, dimer dissociation. The second model postulates the sequential hydrolysis of the two bound ATP molecules. Recent biochemical and structural studies (reviewed in [39]) suggest that the energy released by ATP hydrolysis is not directly translated into substrate translocation by conformational changes in the TMDs and thereby does not serve as the "power stroke" in the catalytic cycle as had been postulated previously [60]. Rather, ATP binding itself induces the necessary conformational changes for substrate translocation by NBD dimerization, and subsequent hydrolysis resets the transporter to its original conformation. Based on the general, "Alternating Two-Site Access" mechanism postulated for membrane pumps [58], a catalytic cycle can be assembled that integrates these biochemical findings. Figure 4 depicts the "Processive Clamp" transport cycle of an ABC exporter: in the initial state, the NBDs are monomers allowing nucleotide exchange and binding, and the high-affinity substrate binding site is exposed by the inward open conformation of the TMDs (step 1). After substrate and ATP binding, the nucleotide-induced dimerization of the NBDs effects the conformational change to the outward open TMD configuration and concomitant substrate translocation across the membrane (step 2), where it is released from its low affinity binding site (step 3). ATP hydrolysis (step 4) then effects the dissociation of the NBD dimer (step 5), which drives the conformational change of the TMDs back to the inward open conformation. The hydrolyzed nucleotide can be exchanged against fresh ATP, which completes the catalytic cycle (step 6).

This model of the catalytic cycle nicely intregrates the biochemical and structural findings of both isolated NBDs and full transporters. NBDs have been overexpressed and purified in isolation for crystallization and in vitro studies. Some of these subunits display a basal ATPase activity, e. g. HisP or HlyB-NBD [61,62], or the cloned NBD of P-gp from mouse, contradicting the argumentation that hydrolysis occurs only in the presence of bound substrate.

Figure 4. The "Processive Clamp" model of the ABC transport cycle. 1) The translocation channel formed by the two TMDs is open towards the cytosol, and the NBDs are monomeric and can exchange nucleotides. 2) After substrate binding to the high affinity site, bound nucleotide induces NBD dimerization and changes translocation channel to outward open conformation. 3) Substrate is released from the low affinity binding site. 4) Nucleotides are hydrolyzed, 5) which triggers NBD dissociation and subsequent change back to the inward open conformation of the translocation channel. 6) Hydrolyzed nucleotides can be exchanged in the monomeric NBDs, and a new cycle can be initiated. Adapted from [23].

Interestingly though, ATPase activity of the histidine permease NBD (HisP) is abolished by addition of the corresponding TMDs. In such a setting, hydrolysis can be measured again only after substrate addition [63,64]. In the intact scaffold of the transporter structure, hydrolysis of ATP in the NBDs is tightly coupled to substrate recognition and binding in the TMDs. But how is the binding event in the TMDs relayed to the NBDs in order to allow ATP binding, and how is the dimerization event translated into the proposed conformational changes in the TMDs? Mutagenesis studies on the maltose importer system identified the EAA motif in the fourth cytosolic loop of the TMD unit that mediated assemly of the separately encoded TMD and

NBD subunits but failed to do so when mutated [29]. This conserved loop was subsequently found to interface with its adjacent NBD in the solved structures of complete transporters $[41,54,55,65,66,67,68]$ and is generally thought to play an important role in the interdomain crosstalk during the transport cycle (Figure 5).

Figure 5. Crosstalk between TMDs and NBDs. A, left The vitamin B_{12} importer BtuCD consists of two identical NBDs and two identical TMDs that each comprise 10 transmembrane helices. The proposed coupling helices of each TMD (coloured in red) interface with the NBD directly below. B Sav1866 is a homodimeric half-size exporter with 6 transmembrane helices. Here, two cytosolic loops in each TMD are candidates for interdomain communication: one helix interfaces with the cis-NBD (on the same polypeptide chain as the TMD) while the other is the classic coupling helix that interfaces with the trans-NBD. The denoted helices are assumed to couple substrate recognition and transport to hydrolysis of ATP or, in other words, mediate the crosstalk between TMDs and NBDs during the catalytic cycle. The bound ADP molecules in the Sav1866 structure are depicted as calotte models.

1.4 The Human ABC Transporter Superfamily

Based on phylogenetic analysis, the 48 ABC genes found in human are divided into seven subfamilies, $A B C A$ to $A B C F$ [19]. Many of the human $A B C$ transporters have been discovered in studies on hereditary diseases in which they are implicated (Table 1). A prominent example is cystic fibrosis, the most common fatal inherited human disease [69].

Subfamily $A B C A$ (ABC1) contains twelve full-size transporters and the largest human ABC genes, some of which encode proteins longer than 2100 amino acids. Mutations in two A subfamily genes are associated with hereditary diseases: ABCA1 is connected with Tangier disease and functions in cholesterol transport and highdensity lipoprotein (HDL) biosynthesis [70,71,72,73]. Mutations in ABCA4 cause Stargardt disease, a progressive macular degeneration [74,75,76]. ABCA4 transports a retinal precursor in the outer rod segment of photoreceptor cells that is cytotoxic upon accumulation.

A unique feature of the B (MDR/TAP) subfamily is that it comprises both full(four) and half-size (seven) transporters. ABCB1 (MDR1, P-gp) was the first cloned and studied human $A B C$ transporter [77,78,79,80,81]. It was identified as the cause of a multidrug resistance phenotype in tumour cells. It can be found in many tissues including the blood-brain barrier and the liver. ABCB4 and ABCB11 proteins are both located in the liver and are involved in the secretion of bile components [82,83,84]. ABCB2 and ABCB3 form the TAP heterodimer that exports peptides derived from the proteasome in the cytosol into the endoplasmic reticulum (ER) for MHCl antigen presentation on the cell surface. Other members function in mitochondrial iron metabolism and Fe / S cluster transport [85].

The ABCC (MRP/CFTR) subfamily encompasses the MRP (multidrug resistance related proteins), the sulfonylurea receptors (SUR) 1 and 2 and the cystic fibrosis transmembrane conductance regulator (CFTR). It is the biggest $A B C$ subfamily [86], containing twelve full-size transporters with diverse functions such as ion transport (CFTR), cell surface receptor (SUR), and toxin extrusion (MRP1 and 2). The chloride ion channel CFTR participates in exocrine secretion, and mutations in CFTR cause cystic fibrosis, the most common mutation being the Δ F508 deletion leading to protein misfolding and degradation (reviewed in [87]). ABCC8 and ABCC9 (SUR1 and 2) bind sulfonylurea and regulate potassium channels involved in modulating insulin secretion [88]. Of the nine MRP-related genes, ABCC1, ABCC2,
and ABCC3 transport drug conjugates to glutathione and other organic anions. ABCC4, ABCC5, ABCC11 and ABCC12 lack an additional N-terminal TMD0 that is comprised of five transmembrane helices (reviewed in [89]). The TMD0 segment has been found to be irrelevant for transport function [90]. ABCC4 and ABCC5 proteins confer resistance to nucleosides including PMEA and purine analogs that are used in antiviral treatment.

The ABCD (ALD) subfamily contains four genes. The yeast subfamily members Pxa1 and Pxa2 form a heterodimer involved in peroxisomal very long chain fatty acid (VLCFA) oxidation [91]. All members are half-size peroxisomal transporters participating in the regulation of VLCFA transport.

The ABCE (OABP) and ABCF (GCN20) subfamilies contain genes that have ATP-binding domains that are clearly derived from ABC transporters but have no TMDs and are not known to be involved in any membrane transport functions. The only $A B C E$ member is the oligo-adenylate binding protein [92]. Oligo-adenylate is produced in response to infection by certain viruses [93]. ABCE has been suggested to be part of the innate immune system as it is found in multicellular eukaryotes, but not in yeast. ABCF genes code for a pair of NBDs. In yeast, Gcn20 mediates activation of the elF-2alpha-kinase [94]. Studies on its human homolog ABCF1 have shown association with the ribosome, proposing similar function [95].

The human ABCG (White) subfamily is comprised of six half-size transporters that, in contrast to all other human ABC superfamily members, possess an inverted topology (i. e. NBD-TMD instead of TMD-NBD). The name White is derived from the ABCG gene at the white locus of Drosophila. Here, the white protein participates in transport of the eye pigment precursors guanine and tryptophan [96]. In contrast, mammalian ABCG1 is associated with cholesterol transport regulation [97]. The multidrug efflux pump BCRP (ABCG2, also known as MXR, mitoxantrone resistance protein) and the ABCG5/G8 heterodimeric cholesterol transporter of liver and intestine are prominent ABCG members associated with tumor MDR and sitosterolemia, respectively [98]. Next to MDR1 and MRP1 and other MRP members, ABCG2 mediates multidrug resistance in a variety of tissues.

Table 1. Human ABC transporter genes and their associated hereditary diseases

ABC Gene	Associated disease	Physiological function	Reference
ABCA1	Tangier disease, FHDLD	Export/loading of cholesterol and phospholipids onto HDL	[70,71,72,73]
ABCA4	Stargardt disease, FFM, RP, CRD, CD, AMD	Translocation of N -retinylidene-PE, an all-transretinal precursor	[74,75,76]
$A B C B 1$	Ivermectin susceptibility, Digoxin uptake	Resistance against various cytotoxic compounds	[77,78,79,80,81]
ABCB2	Immune deficiency	Peptide import into ER lumen	[99,100,101,102,103]
ABCB3	Immune deficiency	Peptide import into ER lumen	
ABCB4	PFIC3, ICP	bile formation; PC floppase	[82,83,104,105,106]
ABCB7	XLSA/A	mitochondrial iron transport?	[107,108]
ABCB11	PFIC2	bile formation; bile salt export	[109,110]
ABCC2	Dubin-Johnson syndrome	export of GSH- and glucoronic acid-conjugated substances; bilirubin export	[111,112]
ABCC6	Pseudoxanthoma elasticum	transport of GSH-conjugates?	[113]
ABCC7	Cystic fibrosis, CBAVD	Cloride channel	[114,115,116]
ABCC8	FPHHI	K+-channel regulation?	[117]
ABCD1	Adrenoleukodystrophy	peroxysomal VLCFA transport?	[118]
ABCG5	Sitosterolemia	Bile formation; cholesterol export	[119,120,121]
ABCG8	Sitosterolemia	Bile formation; cholesterol export	

FHDLD, Familial High-Density Lipoprotein Deficiency (= Hypoalphalipoproteinemia); FFM, Fundus Flavimaculatis; RP, Retinitis Pigmentosum 19, CRD, Cone-Rod Dystrophy; CD, Corneal Dystrophy; AMD, Age-related Macular Degeneration; PFIC 2/3, Progressive Familial Intrahepatic Cholestasis Type 2/3; ICP, Intrahepatic Cholestasis of Pregnancy; XLSA/A, X-Linked Sideroblastic Anemia and Ataxia; CBAVD, Congenital Bilateral Aplasia of Vas Deferens; FPHHI, Familial Persistant Hyperinsulinemic Hypoglycemia of Infancy. PE, Phosphatidyl Ethanolamine; ER, Endoplasmic Reticulum; PC, Phosphatidyl Choline; HDL, High-Density Lipoprotein; VLCFA, very long chain fatty acid

1.5 Active Transport and Detoxification Processes in the Liver

A plethora of endogenic and exogenic substances are excreted by the liver (for a short description of liver morphology see Figure 6), which carries out many metabolic reactions of exogenic importance [122]. Enzymes and active membrane transport systems are the two fundamental components carrying out this task [123]. However, the fundamental importance of the transport systems has only recently been established (reviewed in [124]). A wide range of specialized transport systems catalyzes the uptake of amphipatic, polar and lipophilic substances [125] from the blood. These are localized in the basolateral or sinusoidal membrane of the polarized hepatocytes (Figure 7) [126]. In contrast, ABC transporters localized in the apical or canalicular membrane mediate the active and energy-dependent secretion of bile salts, drugs and metabolic end products against a steep gradient into the canaliculi or bile ductules that ultimately converge in the gall bladder [124].

In general, hepatic elimination of xenobiotics is a complex sequence of uptake, intracellular metabolization and export [123]. Export can be directed towards two ways (Figure 7): across the basolateral membrane into the blood and subsequently to the kidneys, where the drug is cleared from the blood and excreted as part of the urine, or across the apical membrane into bile fluid, by which it is first secreted into the duodenum and finally disposed of via the feces. By virtue of hepatocyte polarity, substrate excretion is controlled [123]. The membrane domains are separated by tight junctions and are distinctly targeted by the cellular protein trafficking machinery, so that each has a separate repertoire of membrane proteins.

All import processes at the basolateral membrane are mediated by members of the solute carrier (SLC) family $[127,128]$. These are the sodium $\left(\mathrm{Na}^{+}\right)$taurocholate cotransporter (NTCP) and the organic anion transporters (OATPs). In contrast, all export from the hepatocyte into bile or blood is exerted by ABC transporters. Export into blood is mediated by the Multidrug Resistance-related Protein (MRP) 1 and MRP3 [129,130], export into the canaliculular lumen by MRP2, BSEP, MDR1, MDR3, the breast cancer resistance protein (BCRP), the ABCG5/G8 heterodimer, and others [124,130,131].

Figure 6. Morphology of the human liver. A Liver tissue is organized into lobules, roughly hexagonal fields of liver parenchyma surrounding the central vein. These form the functional units of the liver. The set of inlay micrographs shows the centre of a lobule with the central vein (left) and the cellular morphology (right). Blood flows through the sinusoid, and hepatocytes are organized into hepatic cords connected to each other by the apical or canalicular membrane while the basolateral or sinusoidal membranes flank the adjacent sinusoids. B Cartoon of cell morphology as depicted in micrograph inset below. Liver section micrographs adapted from [132], cartoon adapted from [133].

The Bile Salt Export Pump (BSEP, ABCB11)

ABCB11 belongs to the B subfamily of ABC transporters and was discovered in 1995 in Vancouver [134]. At the same time, another group in Zurich could demonstrate the ATP-dependent bile salt export from the liver [135]. Initially, the ABCB11 gene was termed $s P-g p$ (sister of P-glycoprotein) and connected to chemotherapeutic resistance of certain cell types [134]. However, Gerloff and coworkers could establish the function of ABCB11 or BSEP (bile salt export pump) in hepatic bile salt export [135].

Figure 7. Localization of active transport systems in hepatocytes. The apical membranes of two hepatocytes together form a canaliculus that is separated from the basolateral membranes by tight junctions. All primary active export systems are ABC transporters, which have to work against steep concentration gradients (in red letters). All transporters contributing to bile formation are set in boxes. NTCP, sodium taurocholate cotransporting polypeptide, OATP; organic anion transporting polypeptide; G5/G8, ABC G5/G8, the half-size, heterodimeric cholesterol exporter; BA, bile acid; OA, organic anion; OC, organic cation; GSH, reduced gluthathion; Chol, cholesterol; BA-G/-S, glyco-/ S-conjugated bile acid. Adapted from [136].

Hydrophobicity analyses classify BSEP as a classic full-size transporter, consisting of two homologous halves with 6 transmembrane helices each, and cytosolically located NBDs (Figure 8) [131]. The C-loop of the C-terminal NBD features the amino acid sequence LSRGEK instead of the expected LSGGQ consensus. In addition, the glutamate residue C-terminal to the Walker B motif is missing in the N-terminal NBD. Its postulated function is the stabilization of the catalytically essential histidine of the H-loop in a conformation productive for hydrolysis [35]. This shows a degeneration of one of the two ATP binding sites which has already been reported for other ABC transporters like Pdr5 in S. cerevisiae, and the human CFTR and TAP [137,138,139].

BSEP is expressed almost exclusively in the canalicular membrane and subcanalicular vesicles of the liver [135], under tight translational and posttranslational control. Interestingly, a high concentration of bile salts effects BSEP expression [140] by binding to the nuclear farsenoid X receptor (FXR) [141]. FXR is,
in the heterodimeric complex with retinoic X receptor (RXR), a bile salt activated receptor. In addition to this translational control, the insertion of BSEP-containing vesicles in the canalicular membrane is, for instance, controlled by the cellular status of hydration [142] or the BSEP substrate tauroursodeoxycholate [143]. Isoforms of the protein kinase C (PKC), phosphoinositide kinase or p38 MAP kinase also control the transport from the Golgi apparatus to the canalicular membrane [144]. BSEP activity also depends on its phosphorylation status. Bile salt transport is upregulated eighteenfold by the presence of phorbol esters, while the inhibition of phosphorylation by activation of PKC ε apparently reduces BSEP transport efficiency [145].

Figure 8. Domain topology of BSEP, MDR3 and MRP2. While all three are fullsize transporters, MRP2 belongs to the ABC C subfamily of the human ABC transporter subfamily. Several members of this subfamily have an additional N-terminal transmembrane domain consisting of five membrane-spanning helices. This TMDO is also referred to as NTE (N Terminal Extension). Blue, TMDs; red, NBDs. N- and C-termini are indicated. Black lines indicate the membrane.

Progressive Familial Intrahepatic Cholestasis Type 2

Mutations in BSEP effect one type of hereditary cholestasis, termed progressive familial intrahepatic cholestasis (PFIC) type 2 [109,110]. So far, over 140 mutations have been described in associated with PFIC2, their majority resulting in truncated proteins or being missense mutations. In those forms of PFIC2, no BSEP protein can be detected in the canalicular hepatocyte membrane. Experimental evidence
suggests that BSEP mutations and changes in BSEP expression levels play an important role in induced cholestasis of the liver [110]. Here, a frequent mutation or allelic variant in the caucasian population is the V444A allele of BSEP that is associated with drug-induced liver cholestasis [146]. PFIC2 patients eventually suffer from organ failure and need a liver transplant for long-term survival.

The Multidrug Resistance Protein 3 (MDR3, ABCB4)

ABCB4 (syn. Multidrug resistance protein 3, Mdr3) is a full-size transporter also localized to the canalicular or apical membrane of hepatocytes and functions a a phosphatidylcholine (PC) floppase that specifically translocates its lipid substrate from the inner to the outer membrane leaflet [147,148]. In the canalicular lumen this lipid, together with cholesterol, forms mixed micelles with the bile salts excreted by BSEP. In these mixed micelles, their strong detergent capacity is neutralized.

Progressive Familial Intrahepatic Cholestasis Type 3

Mutations in MDR3 lead to progressive familiar intrahepatic cholestase type 3 (PFIC3). Here, no phosphatidylcholine is detectable in the bile fluid and the strong bile salt detergent activity leads to severe cellular damage. PFIC3 ultimately results in liver cirrhosis and subsequent organ failure, necessitating liver transplatation. To date, over 45 mutations have been associated with this hereditary condition [149,150,151].

The Multidrug Resistance-related Protein 2 (MRP2, ABCC2)

The function of MRP2 (or cMOAT for canalicular multispecific organic anion transporter, [152]) is the secretion of organic anions such as bilirubin, leukotriene C4, divalent bile salts and gluthathion, glucuronide and sulfate conjugates [129]. MRP2 is localized in the canalicular hepatocyte membrane and mediates protection towards toxic substances, antibiotics and heavy metals [153,154]. MRPs are special in that most of them possess a third transmembrane domain N -terminal to the classic (TMDNBD) ${ }_{2}$ core unit, giving them the topology TMDO-(TMD-NBD) $)_{2}$. Hydrophobicity analyses suggest a number of five transmembrane helices in the TMD0 domain while the other TMDs represent the standard, six transmembrane helix topology (shown in Figure 8). The (TMD-NBD) ${ }_{2}$ core is rather conserved among MRPs. Interestingly, and
in contrast to this finding, the MRP-specific TMDO segment is the one least conserved in this subfamily [155]. Its exact function remains to be determined, as MRP mutants lacking the TMD0 are still functional. However, deletion of this domain results in loss of targetting to the apical membrane of MRP2 [156]. The deletion of the intracellular connecting loop between TMD0 and adjoining the core part results in inactive proteins [157,158].

The Dubin-Johnson Syndrome (DJS)

Mutations in MRP2 are responsible for the relatively mild Dubin-Johnson syndrome, an autosomal recessive defect in bile acid secretion [111]. To partially compensate for defects in MRP2, expression of MRP3 is upregulated. In contrast to MRP2, MRP3 resides in the basolateral membrane [159]. This finding reinforces the concept that secretorial direction in the liver is regulated by the activity of the corresponding ABC transporters. Clinical symptoms include mild jaundice that can become more severe by estrogen-based contraceptive drugs, and chronic conjugated hyperbilirubinemia [111]. The deposition of black pigment in the hepatocytes of DJS patients can be observed [160].

1.6 The Role of Human Hepatic ABC Transporters in Bile Formation

Bile is a vital secretion and essential for intestinal digestion and absorption of lipids. In addition, it is an important way of elimination for xenobiotics like environmental toxins, carcinogens, drugs and their metabolites. Endobiotics such as bilirubin and hormones are also secreted via the bile fluid.

The normal formation of bile is a finely tuned process of both osmosis and concerted transport action from the hepatocyte into the canalicular lumen. Bile is mainly composed of water, cholesterol, conjugated bile salts, lipid, and bilirubin, as well as several conjugated or unconjugated compounds [161]. All membrane pumps involved in this active, vectorial transport are ABC transporters that maintain and work against steep gradients of their substrates across the canalicular membrane. The osmotic force of these gradients comes mainly from bile salts (BSEP) and gluthathion (MRP2) and generates a water flow through aquaporins and the tight junctions delimiting the canaliculus. The drug transporters MDR1, MRP2, and BCRP mediate drug elimination as the second physiological function of bile.

The functionally active components in bile are cholesterol, bile salts and phosphatidylcholine. This phospholipid is moved from the inner to the outer canalicular membrane leaflet by MDR3, while cholesterol is translocated by the cholesterol floppase ABCG5/G8 (Figure 9) [119,162,163]. In the outer leaflet, both sterol and lipid are further concentrated by the inward flip of phosphatidylserine by the PS flippase FIC1 (ATP8B1, a P4-Type ATPase, [164]). Here, the bile salts exported by BSEP extract PC and cholesterol, forming mixed micelles in the process. In these micelles the strong bile salt detergents are neutralized, so that cellular damage to the tissue surrounding the bile canaliculi is prevented [161]. At the same time, the depletion of PS from the outer leaflet also favours the formation of laterally separated membrane microdomains (lipid rafts) by the highly enriched cholesterol and sphingomyelin as the potential microdomain constituents [165,166,167,168]. These are believed to stabilize the canalicular transporters themselves against the high lumenal concentration of bile salts. Indeed, ABC transporters have been found to be associated with membrane microdomains [169], and loss of the underlying asymmetric lipid distribution has been associated with their reduced activity [170].

Figure 9. Current model of bile formation at the canalicular membrane of hepatocytes. All involved processes are primary active and dependent on ATP hydrolysis. FIC1 is a phosphatidylserine flippase. Its action is proposed to concentrate cholesterol and phosphatidylcholine in the outer membrane leaflet and provide additional protection of the membranes against the strong detergent effect of bile salts. Adapted from [171].

1.7 Eukaryotic Expression Systems for Human ABC Transporters

As described, fundamental processes of both normal and diseased physiology such as multidrug resistance (MDR) and bile formation are mediated by a number of identified ATP binding cassette (ABC) transporters. The major bottleneck in mechanistic studies of both wild type and disease-associated mutated variants of the transporters is obtaining sufficient amounts of these membrane proteins. Cultivation of liver-derived cell lines such as HepG2 in order to obtain suitable amounts of the ABC transporters involved in bile formation is not feasable: slow cell division rates (six to eight hours) and the general low abundance of these transporters in their native tissue forbid their use in large-scale protein production [172]. Heterologous overexpression in a suitable host is a frequent attempt to overcome this limitation [173]. However, the expression of BSEP and MDR3 in insect cells, while providing functional protein, requires extensive culturing for two to three days after infection with the recombinant baculovirus, which has to be generated first [174,175]. Cell culture-based systems may generally be suitable for addressing questions of a cellular phenotype, protein trafficking, and modification or protein interaction and can even provide the basis for some in vitro approaches. One example for this is the purification and biochemical characterization of human MRP2 from human embryonal kidney (HEK) 293 cells [176,177]. For both structural and mechanistic in vitro studies on purified and membrane-reconstituted protein, much larger amounts are needed. In general, some yeasts species have been found to provide suitable functional expression systems for mammalian membrane proteins [173,178].

Saccharomyces cerevisiae (S. cerevisiae)

The unicellular eukaryote S. cerevisiae is a well-characterized expression system for eukaryotic membrane proteins [179]. Five of the seven human ABC transporter subfamilies can be found in this yeast species [180], among these the ABCB (MDR/TAP) and ABCC (MRP/CFTR) subfamilies that in human contain BSEP, MDR3, and MRP2, respectively. Previously, S. cerevisiae has been used to express both functional MDR1, a BSEP homologue [181,182], and human MRP1, a homologue of the conjugate efflux pump MRP2 [183,184]. Taken together, these studies indicate the potential of S. cerevisiae for heterologous overexpression of BSEP, MDR3, and MRP2 in S. cerevisiae. Two key advantages of S. cerevisiae in foreign gene expression are its easy cultivation and the well-established genetic
manipulation. In rich medium, a yeast cell in logarithmic growth phase on average divides every ninety minutes [185], thus providing substantial cell mass in a short time.

A good example for the levels of expression obtainable in S. cerevisiae is the Pleiotropic Drug Resistance (PDR) ABC transporter Pdr5 which could be overexpressed and studied in a haploid S. cerevisiae strain that carries a mutated transcriptional factor, Pdr1 (pdr1-3) [186,187]. The mutated factor is constitutively active and drives strong Pdr5 expression up to 8% of the total yeast plasma membrane protein during mid-log growth phase [188]. The yeast pleiotropic drug resistance network is under tight control of the transcriptional factors Pdr1p und Pdr3p [18,188,189,190]. Mutations in both genes can effect the constitutive expression of PDR components. Under control of the PDR5 promoter in the pdr1-3 strain background, the yeast membrane proteins Yor1, Rsb1, Mdl1, and Drs2 could also be overexpressed [191]. It has also successfully been used by other groups for membrane protein overexpression in yeast [192,193,194].

Pichia pastoris (P. pastoris)

The methylotrophic yeast P. pastoris has already been successfully used for expression of human MDR1 [195] and MRP1 [196]. Several human ABC transporters have been expressed in this system to date [195]. Remarkably, the heterologous overexpression of the human, heterodimeric half-size cholesterol transporter ABCG5/G8 could be established and used to study its biochemistry in vitro [197,198]. Recently, the expression of 25 human ABC transporters has been reported [199]. Expression in the Pichia system is frequently accomplished from the chromosomal AOX1 locus. The strong promoter natively drives the expression of the alcohol oxidase enzyme up to 25% of total soluble protein [200]. The most poignant advantage of this yeast, however, is its rapid growth in comparison with mammalian cell culture, to densities that allow harvesting more than 400 grams of wet weight of cell mass from one litre under controlled fermentation. With Pichia, kilogram amounts of cell mass can routinely be harvested from a single, middle-sized fermenter run. Thus, while the expression level of a heterologous gene, and especially a human polytopic membrane protein, may not be very high, the abundant cell mass that is obtained by Pichia fermentation can compensate this shortcoming [200].

Aims and Objectives

The reported, disease-associated mutations in human $A B C$ transporter genes like BSEP and MDR3 can be grouped as follows: the first group of mutations can be silent and even reside outside the protein-coding exons of the gene structure on the chromosome. These impair the correct splicing of the gene into a mature mRNA and result in loss of its expression. The second group are nonsense mutations that result in truncated and non-functional protein. The third group consists of missense mutations that result in single amino acid substitutions in the mature protein. They can influence its function, proper folding or correct localization to the canalicular membrane. Several of these are found in the TMDs or outside of the conserved motifs in the NBDs.

Cell culture systems are limited in that they may allow for studies on mutation-related trafficking defects, but being complex, they cannot give insight into the mechanistic impact of a mutation on the function of the protein itself. This can only be investigated in vitro. The system of choice for this is the functionally reconstituted ABC transporter in a proteoliposome. In such a defined in vitro environment, kinetic parameters such as ATPase or substrate binding and transport can be studied on both wild type and mutant variants. For these in vitro studies, purified and functional protein is needed. However, in their native tissue, the liver ABC transporters are not present in sufficient amounts, and therefore cannot, for example, be obtained by purification from a liverderived human cell line such as HepG2 (a human liver tumor-derived cell line). The first aim of this thesis is therefore the heterologous overexpression in a suitable host. As detailed above, yeast species are potential candidates to be tested.

Since eukaryotic coding sequences are sometimes inefficiently cloned, which has been shown to be particularly difficult for BSEP and MDR3, a system is desirable that allows their easy handling and, preferably, also their targeted mutagenesis. The second aim of this thesis is therefore the development of a general and flexible system to clone and manipulate the corresponding coding sequences. This system should also enable the rapid exchange of sequences between different expression hosts such as, for instance, mammalian cell culture and yeast to facilitate the investigation of clinically relevant mutations both in cell culture and in vitro.

2 Materials and Methods

2.1 Materials

2.1.1 Chemicals and Reagents

Acetic acid, glacial
5-bromo-4-chloro-3-indolyl-beta-D-
galactopyranoside (X-Gal)
Acrylamide/bisacrylamide (37.5:1) 30 \% solution
Agar
Agarose, GTQ
Ammonium peroxodisulfate (APS)
Ammonium sulfate
Bromophenol blue
Carbenicilline
Cobalt chloride
Coomassie Briliant blue R-250
Dimethyl sulfoxide (DMSO)
Dithiotreitol (DTT)
dNTPs (10 mM)
Ethanol
Ethidium bromide
Ethylenediamine tetraacetic acid (EDTA)
Formaldehyde, 37 \% (wt/wt) solution
Glucose
Glycerol (98 \% (v/v))
Hydrochloric acid, 37 \% (w/v)
Isopropanol
Isopropyl-beta-D-thiogalactoside (IPTG)
L-amino acids

Lithium acetate
Methanol
Non-fat dried milk powder (Blotting Grade)
Polyethylenglycol 4000 (PEG 4000)
Ponceau S

Normapur
Carl Roth
Carl Roth
Serva
Carl Roth
Carl Roth
J.T. Baker

Sigma-Aldrich
Carl Roth
Fluka
Carl Roth
Carl Roth
ICN
Fermentas
Carl Roth
Carl Roth
AppliChem
Carl Roth
Caesar \& Loretz
Grüßing
Riedel-de Haën
Carl Roth
Carl Rohl
Serva, Fluka, Carl Roth, Sigma-Aldrich, Merck
Fluka
Carl Roth
Carl Roth
Fluka
Sigma-Aldrich

Protease inhibitor cocktail tablets, EDTA-free	Roche
Sodium acetate	Fluka
Sodium azide	Fluka
Sodium chloride	J.T. Baker
Sodium hydroxide	J.T. Baker
Sorbitol	Carl Roth
Tetramethylethylendiamin (TEMED)	Merck
Trichloroacetic acid (TCA)	Fluka
Tris-(hydroxymethyl)-aminomethan (Tris)	Sigma-Aldrich
Tryptone/peptone from caseine	Carl Roth
Urea	Grüßing
Yeast extract	Carl Roth
Yeast nitrogen base (YNB)	Difco
β-mercaptoethanol	Carl Roth

2.1.2 Detergents

CYMAL 5	Glycon
Decyl- β-D-maltopyranoside (DM)	Glycon
Dodecyl- β-D-maltopyranoside (DDM)	Glycon
Fos-choline 14 (FOS-14)	Anatrace
Fos-choline 16 (FOS-16)	Anatrace
Sodium dodecylsulfate (SDS)	Serva
Tween 20 / 80	Carl Roth

2.1.3 Antibodies

MLE	$[201]$
M $_{2}$ II-6	$[202]$
K24	$[174]$
K168	$[203]$
C219	Abcam
pentaHis	Qiagen
a-Dpml	Molecular Probes/Invitrogen
a-Pdr5	$[204]$

goat α-rabbit IgG, HRP-coupled
goat α-mouse IgG, HRP-coupled

Sigma-Aldrich
Pierce

2.1.4 Antibiotics

Ampicilline	Carl Roth
Carbenicilline	Carl Roth
Kanamycin	Carl Roth

2.1.5 Drugs

Cycloheximide	Fluka
Doxorubicine	Sigma-Aldrich
FK506 (Tacrolimus)	Alexis
Fluconazol	Sigma-Aldrich
Ketoconazole	Sigma-Aldrich
Lovastatin	$15 \%(v / v)$ ethanol, 250 mM NaOH
Pravastatin	Sigma-Aldrich
Taurocholate	Sigma-Aldrich
Taurodeoxycholate	Sigma-Aldrich

2.1.6 Enzymes, proteins, and kits

Enzymes and proteins

Calf intestinal alkaline phosphatase (CIAP)	Fermentas
T4 DNA ligase	Fermentas
T4 polynucleotide kinase	New England Biolabs
Bovine serum albumin Fraction $V(B S A)$	Carl Roth

All polymerase-based reactions were performed with the Phusion ® High Fidelity DNA polymerase (Finnzymes) and the supplied HF buffer. Restriction enzymes were either from NEB or Fermentas.

Kits

Plasmid Miniprep kit	Qiagen
Plasmid Midiprep kit	Qiagen
Nucleobond Xtra Midiprep kit	Macherey \& Nagel
DNeasy Blood and Tissue Kit	Qiagen
Ni-NTA slurry	Qiagen

2.1.7 Markers

PageRuler Plus prestained protein ladder Fermentas
GeneRuler 1 kb DNA ladder Fermentas

6X His protein ladder
Qiagen

2.1.8 Plasmids

pRE2	$[205]$
pRE3	$[205]$
p10HISHA	This study
p2HA	This study
p10HisSfil	This study
p14HisSfil	This study
pCDNA3.1-MRP2	[206]
pbluebac4.5-BSEP	[207]
pbluebac4.5-MDR3	Kind gift of Prof. Kenneth Linton
YEpHIS	[182]
YEpMDR1HIS	[182]
YEpNHIS	This study
YEpNHISBSEP	This study
YEpCHISBSEP	This study
YEpNHISMDR3	This study
YEpCHISMDR3	This study
YEpCHISMRP2	This study
p426-GPD, -TEF, -MET25, -CYC, -GAL1	ATCC No. 87669 [208], and
	ATCC No. 97670 [209]

p426-GPD-N6HISBSEP	This study
p426-GPD-C6HISBSEP	This study
p426-TEF-N6HISBSEP	This study
p426-TEF-C6HISBSEP	This study
p426-MET25-N6HISBSEP	This study
p426-MET25-C6HISBSEP	This study
p426-CYC-N6HISBSEP	This study
p426-CYC-C6HISBSEP	This study
p426-GAL1-N6HISBSEP	This study
p426-GAL1-C6HISBSEP	This study
pPIC3.5	Invitrogen
pPIC3.5-CHISBSEP	This study
pEYFP-N1-BSEP	[210]

The YEpHIS and YEpMDR1HIS plasmids were the kind gift of Prof. Marwan AlShawi (Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, USA). The BSEP and MDR3 cDNA were the kind gift of Prof. Kenneth J. Linton (Barts and The London School of Medicine and Dentistry, Institute of Cell and Molecular Science, Queen Mary University of London, UK). For the sake of clarity, the YEpHIS plasmid encoding the C-terminal his ${ }_{8}$ tag is referred to as YEpCHIS throughout this work.

2.1.9 Strains

Escherichia coli
DH5alpha F^{-}endA1 ginV44 thi-1 recA1 relA1 gyrA96 deoR nupG Ф80dlacZロM15 $\Delta(l a c Z Y A-a r g F) U 169, h s d R 17\left(r_{K}^{-} m_{K}^{+}\right), \lambda-$

DH10b $\quad \mathrm{F}^{-}$endA1 recA1 galE15 galK16 nupG rpsL $\Delta l a c X 74$ Ф80lacZDM15 araD139 Δ (ara,leu)7697 mcrA Δ (mrr-hsdRMS-mcrBC) λ^{-}

XL1blue endA1 gyrA96(nal ${ }^{R}$) thi-1 recA1 relA1 lac glnV44 $\mathrm{F}^{\prime}\left[:: T n 10\right.$ proAB ${ }^{+}$lacl ${ }^{q}$ $\Delta(l a c Z) M 15] ~ h s d R 17\left(r_{K}{ }^{-} m_{K}{ }^{+}\right)$
Invitrogen

XL10Gold endA1 glnV44 recA1 thi-1 gyrA96 relA1 lac Hte $\Delta(m c r A) 183 \Delta(m c r C B-$ hsdSMR-mrr) 173 tet ${ }^{R} F^{\prime}\left[\right.$ proAB lacl ${ }^{q} Z \Delta M 15 \operatorname{Tn} 10\left(\right.$ Tet $\left.\left.^{R} A m y \mathrm{Cm}^{R}\right)\right]$ Stratagene
S.U.R.E. endA1 glnV44 thi-1 gyrA96 reIA1 lac recB recJ sbcC umuC::Tn5 uvrC e14- Δ (mcrCB-hsdSMR-mrr)171 F^{\prime} [proAB ${ }^{+}$lac ${ }^{q}$ lacZDM15 Tn10] Stragagene
S.U.R.E. 2 endA1 glnV44 thi-1 gyrA96 relA1 lac recB recJ sbcC umuC::Tn5 uvrC e14- $\Delta(m c r C B-h s d S M R-m r r) 171$ F' $^{\prime}$ proAB ${ }^{+}$lacl ${ }^{q}$ lacZDM15 Tn10 Amy Cm^{R}]

Stratagene

Saccharomyces cerevisiae

$\Delta \mathrm{PP}$	MATa; ura3-52;trp1-1;leu2-3,112;his3-11,15;ade2-1;pdr1-3;
	$\Delta P D R 5 p r o m, ~ \Delta p d r 5:: T R P[205]$
AD1-8U-	MATa; PDR1-3; ura3; his1; yor1::hisG; snq2::hisG; pdr5::hisG;
	pdr10::hisG; pdr11::hisG; ycf1::hisG; pdr3::hisG; pdr15::hisG
	$[192]$

Pichia pastoris
GS-115 Invitrogen

2.1.9 Oligonucleotides

The Clone Manager Suite 6 (Sci-Ed Software) was used to design all oligonucleotides and calculate annealing temperatures of the primer pairs. All oligonucleotides were ordered from Eurofins MWG Operon (Ebersberg, Germany).

Sequence 5'-3' (relevant restriction sites in underlined italics and
Oligonucleotide point mutations indicated in bold letter)

Oligonucleotides for the construction of the expression cassette plasmids
N2HA-FOR TCATCACTACCCATACGATGTTCCAGATTACGCTGGTTACCCATACGATG

N2HA-REV	TAAACCAGCGTAATCTGGAACATCGTATGGGTAACCAGCGTAATCTGGAA
N10HIS1HA-FOR	CATCGTATGGGTAGTGATGATGCA
	TCATCACCATCATCACCATCATCACCATGGTGGTGGTTACCCATACGATG
N10HIS1HA-REV	TACCAGATTACGCTGGTTTAAT
	GATGGTGATGATGGTGATGATGCA
N10HIS-Sfil-FOR	TCATCACCATCATCACCATCATCACCATGGTGGTGGTATTGAAGGCCGCT
	CTGGCCAGTTAAT
N10HIS-Sfil-REV	TAACTGGCCAGAGCGGCCTTCAATACCACCACCATGGTGATGATGGTGA
	TGATGGTGATGATGCA
N14HIS-Sfil-FOR	TCATCACCATCATCACCATCATCACCATCATCATCACCATGGTGGTGGTAT
	TGAAGGTAGAATGCCCGAGGCCTTAAT
N14HIS-Sfil-REV	TAAGGCCTCGGGCATTCTACCTTCAATACCACCACCATGGTGATGATGAT
	GGTGATGATGGTGATGATGGTGATGATGCA

Oligonucleotides for the silent mutagenesis of Sfil sites in the pRE2 plasmid backbone and in the MRP2 cDNA.

pRE2-Sfilrem-FOR	TATCAGATCCACTAGTGGCCTATGCGGTCGCGGATCTGCC
pRE2-Sfilrem-REV	GGCAGATCCGCGACCGCATAGGCCACTAGTGGATCTGATA
MRP2-Sfilrem-FOR	TAAGGTCTTGGGCCCCAATGGTCTGTTGAAAGGCAAGACTCGACTC
MRP2-Sfilrem-REV	GAGTCGAGTCTTGCCTTTCAACAGACCATTGGGGCCCAAGACCTTA

Oligonucleotides for Sfil-based cloning of the lacZ fragment and the MRP2 cDNA into p14HisSfil

MRP2-Sfil-S1	GGGCTGGCCGCTCTGGCCTGGAGAAGTTCTGCAACTCTA
MRP2-Sfil-S2	GGGGTGGCCAGAGCGGCCCTAGAATTTTGTGCTGTTCACAT
lacZ-Sfil-S1	GGGCTGGCCGCTCTGGCCATTGAGCGCAACGCAATTAATGTGAGT
	TAG
lacZ-Sfil-S2	GGGCAGGCCAGAGCGGCCTCAATTCGCCATTCAGGCTGCGCAACT
	GTT

Cassette oligonucleotides for the generation of the YEpNHIS plasmid

YEpNHISFor	GATCCTTTAATTATCAAACAATATCAATATGCATCATCACCATCATCA
	CCATCATCACCATCATCATCACCATGGTGGTGGTATTGAAGGTAGA
YEpNHISRev	CCCGGGTAGA
	CGCGTCTACCCGGGTCTACCTTCAATACCACCACCATGGTGATGAT
	GATGGTGATGATGGTGATGATGGTGATGATGCATATTGATATTGTTT
	GATAATTAAAG

Oligonucleotides for the cloning of MRP2, BSEP, and MDR3 into the YEpCHIS and YEpNHIS plasmids by homologous recombination

BSEP-YEpHISN-S1	TCACCATCATCATCACCATGGTGGTGGTATTGAAGGTAGATCTGAC
	TCAGTAATTCTTCGAAGTATAAAG
BSEP-YEpHISN-S2	GAATAAGGTAAACATGGTAGCGATGTCGACCTCGAGACGCGTCTAA
	CTGATGGGGGATCCAGTGGTGACT
BSEP-YEpHISC-S1	ATAAGAAGATAGGATCCTTTAATTATCAAACAATATCAATATGTCTGA
	CTCAGTAATTCTTCGAAGTAT
BSEP-YEpHISC-S2	CGATGTCGACCTCGAGACGCGTCTAATGGTGATGGTGATGGTGAT
	GGTGACCACTGATGGGGGATCCAGTGGTGACT
$M D R 3-Y E p H I S N-S 1 ~$	TCACCATCATCATCACCATGGTGGTGGTATTGAAGGTAGAGATCTT
	GAGGCGGCAAAGAACGGA
$M D R 3-Y E p H I S N-S 2 ~$	GAATAAGGTAAACATGGTAGCGATGTCGACCTCGAGACGCGTCTAT
	AAGTTCTGTGTCCCAGCCTGGACACTGACCATT
$M D R 3-Y E p H I S C-S 1 ~$	ATAAGAAGATAGGATCCTTTAATTATCAAACAATATCAATATGGATCT
	TGAGGCGGCAAAGAACGGA
$M D R 3-Y E p H I S C-S 2 ~$	CGATGTCGACCTCGAGACGCGTCTAATGGTGATGGTGATGGTGAT
	GGTGACCTAAGTTCTGTGTCCCAGCCTGGACACTGACCATT
$M R P 2-Y E p H I S C-S 1 ~$	TCACCATCATCATCACCATGGTGGTGGTATTGAAGGTAGATCTGGC
	CTGGAGAAGTTCTGCAACTCTA
$M R P 2-Y E p H I S C-S 2 ~$	GAATAAGGTAAACATGGTAGCGATGTCGACCTCGAGACGCGTCTAG
	AATTTTGTGCTGTTCACATTCTCAA

Oligonucleotides for the cloning of BSEP into the p426 plasmid set by homologous recombination for the expression screen

BSEP-p426-NHis-HR S1	TCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAATGCAT
	CATCACCATCATCACTCTGACTCAGTAATTCTTCGAAGTATAAAG
BSEP-p426-CHis-HR S2	ATAACTAATTACATGATATCGACAAAGGAAAAGGGGCCTGTCTAACT
	GATGGGGGATCCAGTGGTGACT

Oligonucleotides for the cloning of BSEP into the pPIC3.5 plasmid set by homologous recombination for expression in Pichia pastoris

OriLeu-pPIC3.5-Ndel-S1	AACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGC GAGGCCCTTTCGTCTTCAAGAATTAACTGTGGGA
OriLeu- pPIC3.5-Ndel-S2	GTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATATGAT
CTGTGCGGTATTTCACACCGCATATATCG	
BSEP-pPIC3.5-S1	AATTATTCGAAGGATCCTACGTAGAATTCCCTAGGGCGGCCGCATG TCTGACTCAGTAATTCTTCGAAGTATAAAGAAAT
BSEP-pPIC3.5-S2	TGAGGAACAGTCATGTCTAAGGCGAATTAATTCGCGGCCGCCTAAT
	GGTGATGGTGATGGTGATGGTGACCACTGATG

Oligonucleotides for the E. coli-free site-directed mutagenesis of BSEP for introduction of an extra BstBI restriction site

BSEP-BstBImut-S1	AGCTCTTCGAAGAGCCTTCTCTTACACCCCAAGTTATGCAAAAGCTA
BSEP-BstBImut-S2	AA
	AGAAGGCTCTTCGAAGAGCTGTTGCACTCAGTACAACTGCAGAGAT
	CAC

Oligonucleotides for the addition of a Ori/Leu sequence into the AfllI restriction site of the mammalian BSEP expression construct pEYFP-N1-BSEP by homologous recombination

OriLeu-pEYFP-AfIII-S1	TCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTAAGCGAGGCC
	CTTTCGTCTTCAAGAATTAACTGTGGGA
OriLeu-pEYFP-AfIII-S2	ATTTTAACAAAATATTAACGCTTACAATTTACGCCTTAAGATCTGTGC
	GGTATTTCACACCGCATATATCG

Oligonucleotides for sequencing and of MRP2, BSEP, and MDR3 and colony PCR
MRP2-FWD-Seq1 AGGACCAAGAGATCCTCTAC

MRP2-FWD-Seq2
MRP2-FWD-Seq3
MRP2-FWD-Seq4
MRP2-FWD-Seq5
MRP2-FWD-Seq6
MRP2-FWD-Seq7
MRP2-FWD-Seq8
MRP2-FWD-Seq9

AGGACCAAGAGATCCTCTAC GCTACAAGCGTCCTCTGACA
CTTATTCACTGCGGCTCTCA
TGCGATACTGTCCACCAAGA
gGalgccacagtccgagatg
GCAGTGGATGCTCATGTAGG
AGCCTGAAGGAAGACGAAGA
AGTCCTTGCGCAGCTGGATT
AACTGGCTGGTGAGGATGAC

MRP2-FWD-Seq10
MRP2-FWD-Seq11
MRP2-SeqREV
MRP2-REV-Seq1

BseqFOR1
BseqFOR2
BseqFOR3
BSEP-FWD-Seq3
BseqFOR4
BseqFOR5
BseqFOR6
BseqFOR7
BseqFOR8
BseqFOR9
BseqFOR10
BSEP-REV-Seq5
BseqREV1
BseqREV2
BseqREV3
BseqREV4
BseqREV5
BseqREV6
BseqREV7
BseqREV8
BseqREV9
BseqREV

TCTGGAAGCCTGAGGATGAA
GGTCCTAGACAACGGGAAGA
CATTCTCAATGCCAGCTTCC
AGAGCGGCCTTCAATACCAC

CATGTGTGAATAACACCATTGTA

TAGGAGAATAATGAGAATGGA
TTACGGACTATGAGCTGAAG
CCATCGCTTGTCCACCATCC
AGTGTCATAGTAGGAGCTT
TAGAGATCAGATTGGGATA
AGAGCTGCAGATACCATCAT
CATTAGCTGTTGTAGATCATA
GAGCATTGACAACAAGACTT
GATGTTGACAGGATTTGC
GTGATCTCTGCAGTTGTAC
CCAACTCTAACGCCATCACC
GACAGCAATTCCAGCATAGTA
AACCACAGATGGTCGAGGTCAT
ATCTGGACAAGGGTTCCAG
TAAGAGAGCGAATGTCATG
TATGATCTACAACAGCTAATG
AAGTCTTGTTGTCAATGCTC
GATGACCAGGCTCAGCT
GTCTCAAGTGCTTCAATG
GTTCCAACAGCTGAATGCT
CTGGCCATTCTGACTCAGTA

MDR3-SeqFor1
MDR3-SeqFor2
MDR3-SeqFor3
MDR3-SeqFor4
MDR3-SeqFor4.5
MDR3-SeqFor5
MDR3-SeqFor6
MDR3-SeqFor7
MDR3-SeqFor8
MDR3-SeqFor9
MDR3-SeqFor10
MDR3-SeqREV1
MDR3-SeqREV1.5

GGCCATAGCTCACGGATCAG
CTCAATACGCGGCTAACAGA GGCCATCAGGACTGTGATAG

TCAACCTGAAGGTGCAGAGT
AAGAGGCCAACGCCTATGAG
GATGAGGCCACGTCAGCATT
AATGTGCCACCAGTGTCCTT
AGTCCAAGGAGCCACAGGAA
TGGACATATGCGCTTCAGAG
CAGTGCTTCTCGATGGTCAA
GCCGCACCTGCATTGTGATT
TGCAATGGCGATCCTCTGCT
GCATTTCGGACCGTAGACAG

5'-locus
3'-locus
checkprom_pRK3
Heukan2
Heukan3
p426-Promoterseq
p426-SeqRev
YEpHISsSeq
YEpHISasSeq

AATTATCGTCACAATCTAATCA
GTCAGCCTGCCGTATGTCAA
TTGGCAACTAGGAACTTTCG [205]
GTCAAGACTGTCAAGGAGGG
CATCATCTGCCCAGATGCGAAG
TATGCTTCCGGCTCCTATGT
GCGCGTAATACGACTCACTA
AAAATATACCCCAGCTAGTT
GACACGGACGACAGTAACAA

Oligonucleotides for the site-directed mutagenesis of the cryptic prokaryotic promoter motif (TATAAT box) as in [174]

BSEP-cryptmut-FOR
BSEP-cryptmut-REV

GAGTCAGATAAATCATACAACAATGATAAGAAATCAAGG
CCTTGATTTCTTATCATTGTTGTATGATTTATCTGACTC

2.1.10 Technical devices

Avanti J-20xp	Beckman Coulter
ÄKTA Prime / Basic / Explorer / Purifier	GE Healthcare
Balances EMB 2200-0/ 440-47N/ ALS 220-4	Kern
Bead beater	Biospec
Centrikon T-124	Kontron
ChemiGenius2 imaging system	Syngene
CO8000 Cell density meter	WPA Biowave
Gel electrophoresis apparatus	Custom-made
Incubator	Bachofer
LSM 510	Zeiss
Megafuge 1.0R	Heraeus
Multiwell plate reader Polarstar Galaxy	BMG Labtech
Nanodrop ND-1000 spectrophotometer	Peqlab
pH meter	Schott
Pharmacia ECPS 3000-150 power supply	Pharmacia
Power Pac Basic power supply	Bio-Rad
SDS-PAGE apparatus	Custom-made / Bio-Rad
Semidry Western Blot apparatus	Bio-Rad

Sonorex ultrasonic water bath	Bandelin
Sorvall Evolution RC / Discovery 90 SE and 120 SE	d Thermo Fisher
Sterile cleanbench Lamin Air LB-48-C	Heraeus
Tabletop microcentrifuge 5415C/ 5417R/	/ Eppendorf
5415D	
Thermocycler	Biometra
Thermomixer	Eppendorf
Ultracentifuge L7-65	Beckman Coulter
Unitron shaking incubator	Infors
Vortex Genie 2	Scientific Instruments
Wild M5A stereo microscope	Wild Heerbrugg
Chromatography media	
5 ml IMAC column	GE Healthcare
Superdex 200 10/300 GL column	GE Healthcare
Consumables	
0.5 mm Glas-Beads	BioSpec Products
1.5 and 2 ml reaction tubes SafeSeal and Easy Cap	Sarstedt
15 and 50 ml conical ("falcon") tubes S	Sarstedt
96well microtiter plate, non sterile Grent	Greiner
Amicon Ultra 15 (MWCO 100 kDa) M	Millipore
Biomax Films MS/XAR K	Kodak
Nitrocellulose membranes	Schleicher \& Schüll/Pall Gelman
Pipette tips (10, 200, and $1000 \mu \mathrm{~L}$)	Sarstedt
Whatman 3MM filter paper	Whatman

2.2 Methods

Unless stated otherwise, all buffers and solutions were made from double-distilled water.

2.2.1 Methods of molecular biology and microbiology

All microbiological steps were performed under at least semi-sterile conditions, using either a cleanbench for S. cerevisiae and P. pastoris or a bunsen burner environment for working with E. coli.

2.2.1.1 Cultivation of E. coli

Lysogeny broth (LB, low salt)
$10 \mathrm{~g} / \mathrm{L}$ Tryptone/Peptone from caseine
$5 \mathrm{~g} / \mathrm{L}$ yeast extract
$10 \mathrm{~g} / \mathrm{L} \mathrm{NaCl}$

LB agar

LB medium supplemented with
1.5 \% (w/v) agar

1000X Carbenicilline Stock

$50 \mathrm{mg} / \mathrm{ml}$ Carbenicilline sodium salt in
$50 \%(v / v)$ ethanol
E. coli cells were cultivated in LB medium with either $50 \mu \mathrm{~g} / \mathrm{ml}$ Carbenicillin or 30 $\mu \mathrm{g} / \mathrm{ml}$ Kanamycin at $37^{\circ} \mathrm{C}$ and 200 rpm shaking in baffled Erlenmeyer flasks. For propagation of unstable plasmids, the temperature was strictly kept at $30{ }^{\circ} \mathrm{C}$. Liquid media were always inoculated with single, freshly grown colonies from LB agar plates with the appropriate antibiotic. For the small-scale isolation of plasmids, liquid cultures of 5 ml volume were incubated overnight at the appropriate temperature. For large-scale plasmid isolation, 150 ml medium were used.

For long-term storage of E. coli cells, aliquots of overnight cultures were taken, adjusted to $15 \%(v / v)$ glycerol, and snap-frozen in liquid nitrogen. These glycerol stocks were stored at $-80^{\circ} \mathrm{C}$. For recultivation, a sterile plastic pipette tip was used to transfer frozen material to a room-temperature LB plate, and the thawed bacterial solution was spread with a inoculum needle.
2.2.1.2 Cultivation of S. cerevisiae

```
YP (Yeast extract, Peptone)
20 g/L Tryptone/Peptone from Caseine
10 g/L Yeast extract
(dissolved in }900\textrm{ml dd. water and
autoclaved)
```


YPD (YP Dextrose)

```
YP supplemented with
2 \% (w/v) Glucose
( \(900 \mathrm{ml} \mathrm{YP}+100 \mathrm{ml} 20 \%(\mathrm{w} / \mathrm{v})\) glucose)
```


2X Dropout stock medium (740 ml)

3.4 g Yeast nitrogen base
2.86 g Amino acid mix

5 g Ammonium sulfate
(adjusted with KOH to a pH 5.6 and autoclaved)

20 \% (w/v) Glucose (autoclaved)

YPD agar

YPD medium supplemented with
2 \% (w/v) agar
(autoclaved as YP agar; glucose is added after autoclaving)

Dropout medium and agar (-HIS, -LEU, -URA)
185 ml 2X Dropout stock medium
$3 \times 5 \mathrm{ml}$ of 100X Histidine stock and/or 100X Leucine stock and/or 100X Tryptophane stock and/or 100X Uracil stock
250 ml sterile dd. water or $4 \%(\mathrm{w} / \mathrm{v})$ agar
50 ml 20 \% (w/v) glucose
(e.g. -HIS: Leu, Trp, and Ura are added, His is left out)

100X Histidine / Leucine / Tryptophane

Stock (100ml)
0.6 g Histidine
2.6 g Leucine
0.4 g Tryptophane
0.4 g Uracil
(100X Tryptophane is sterile filtered (0.4μ filter), all other stocks are autoclaved and stored at $4^{\circ} \mathrm{C}$; precipitate formation is dissolved by short sonication and brief heating in a microwave oven)

Amino acid mix (14.5g)
0.4 g Adenin
0.2 g L-arginine
0.3 g L-tyrosine
0.3 g L-isoleucine
0.5 g L-phenylalanine

1 g L-glutamic acid
1 g L-aspartic acid
2 g L-threonine
4 g L-serine
1.5 g L-valine
1.5 g L-methionine
1.8 g L-lysine
S. cerevisiae cells were cultivated at 25 or $30{ }^{\circ} \mathrm{C}$ and 200 rpm shaking in the appropriate liquid medium, using only baffled Erlenmeyer flasks for better aeration. Yeast cells on solid media were maintained at $30^{\circ} \mathrm{C}$ for a maximum time of one week before restreaking onto a fresh plate. Small-scale cultures were of 3-5 ml for expression or drug resistance tests, and 5 or 50 ml culture volumes were used for plasmid recovery experiments. Preparative Plasmid isolation from yeast was always from 1 L overnight cultures.

Glycerol stocks of important cultures were made in analogy to E. coli, but at a final glycerol concentration of $30(\mathrm{v} / \mathrm{v})$. For recultivation, glycerol stock material was streaked out on the appropriate solid medium, and plates were incubated for 2-4 days for colony formation.

2.2.1.3 Cultivation of P. pastoris

MD agar

$13.4 \mathrm{~g} / \mathrm{L}$ yeast nitrogen base
1.5 \% (w/v) agar
added sterile after autoclaving:
$0.4 \mathrm{mg} / \mathrm{L}$ biotin
2 \% (w/v) glucose

MGY and MMY medium

$10 \mathrm{~g} / \mathrm{L}$ yeast extract
$20 \mathrm{~g} / \mathrm{L}$ peptone from caseine
$13.4 \mathrm{~g} / \mathrm{L}$ yeast nitrogen base
$0.4 \mathrm{mg} / \mathrm{L}$ biotin and
1 \% (v/v) gylcerol (MGY) or
0.5 \% (v/v) methanol (MMY)
P. pastoris cells were cultivated like S. cerevisiae with the exception that they were shaken at 250 rpm. Cultivation was also in YPD or on YPD plates for simple propagation purposes, or

2.2.1.4 Chemical Transformation of E. coli

E. coli were made chemically competent by the method of Hanahan [211] or used directly in a competent form as part of a kit. For transformation by heat shock, aliquots of competent cells were thawed on ice for 10 min and split into 50μ laliquots. Regularly, 10-100 ng of plasmid DNA were used in a maximal volume of 5μ l that was added to the cell supension and mixed by gentle stirring with a sterile pipette tip.

After 20 min incubation on ice, cells were subjected to a heat shock at $42{ }^{\circ} \mathrm{C}$ for 60 sec , cooled on ice for 2 min , and were mixed with $800 \mu \mathrm{l}$ of sterile, prewarmed LB medium without any antibiotic. For transformation of normal plasmids, all following steps were carried out at $37^{\circ} \mathrm{C}$, and $30^{\circ} \mathrm{C}$ was used for all unstable constructs. The cells were incubated for 1 h at 200 rpm shaking, pelleted by centrifugation at 8.000 rpm for 2 min in a table top microcentrifuge, and the supernatant was discarded by decantation. Cells were carefully resuspended in the remaining medium and plated out on LB agar containing the suitable antibiotic. At $37{ }^{\circ} \mathrm{C}$, plates were incubated overnight, and at $30^{\circ} \mathrm{C}$, incubation was for two days to allow colony formation of the slow-growing transformants.

2.2.1.5 Measurement of optical density of cell suspensions

The optical density in cultured cell suspensions was measured at a wavelength of 600 nm in disposable cuvettes in a cell density meter (CO8000). Water was used for calibration in the case of dilute samples, and the appropriate medium for non-dilute samples.

2.2.1.6 Chemical transformation of S. cerevisiae

10XTE

100 mM Tris pH 7.5

50 \% (w/v) PEG 4000

LATE buffer

1 ml 10X TE
1 ml 10X LiAc
8 ml dd. sterile water

10X LiAC

1 M Lithium acetate pH 7.5
dd. sterile water

PLATE buffer
1 ml 10X TE
1 ml 10X LiAc
8 ml 50 \% (w/v) PEG 4000

For the preparation of competent S. cerevisiae cells, a single freshly grown yeast colony was used to inoculate an 5 ml YPD culture. After overnight growth, the OD_{600} was measured, and 5 ml YPD in a small baffled Erlenmeyer flask were inoculated to an OD_{600} of 0.2 and allowed to grow to $0.8-1$. The cells were harvested in an sterile

50 ml falcon tube (5 min at 4000 rpm and $4{ }^{\circ} \mathrm{C}$ in a Megafuge 1.0 R), washed once in 30 ml of ice-cold, sterile water and resuspended in 1 ml LATE. After transfer to a sterile 1.5 ml reaction tube, the cells were pelleted by brief centrifugation at 10.000 rpm at room temperature, and resuspended in 50μ LATE per $10 \mathrm{OD}_{600}$ equivalent. Cells were stored for a maximum of four days before transformation with plasmid DNA. For use in homologous recombination, freshly made competent cells were always used.
$50 \mu \mathrm{l}$ aliquots were used for chemical transformation. To these, a maximum of $10 \mu \mathrm{~g}$ linear expression cassette DNA was added, or usually several hundreg ng of plasmid DNA, and the suspension was mixed by pipetting up and down a few times. After addition of 300μ PLATE buffer and careful yet thorough mixing of the reaction, the cells were incubated at $30^{\circ} \mathrm{C}$ for 20 min . They were then heat-shocked by a 20 min incubation at $42{ }^{\circ} \mathrm{C}$. During heat shock, the cells were resuspended every 5 min by gentle inversion. Finally, after harvest by brief centrifugation at 13.000 rpm , the supernatant was completely removed by pipetting the cells were carefully resuspended in $100 \mu \mathrm{l}$ of sterile water and plated out onto appropriate Dropout plates. The plates were incubated at $30^{\circ} \mathrm{C}$ for up to five days in order to allow the growth of sufficiently large colonies that were then restreaked onto the same plate type for a second round of selection.

2.2.1.7 Transformation of P. pastoris by electroporation

1 M sorbitol

500 ml YPD medium were inoculated from an overnight culture to an OD_{600} of 0.2 and grown to OD_{600} 1.3-1.5. Cells were harvested by centrifugation for 5 min at 1.500 $x \mathrm{~g}$ and $4^{\circ} \mathrm{C}$ and then washed twice with 500 ml of ice-cold, sterile dd. water. The cells were resuspended in 20 ml of ice-cold 1 M sorbitol, transferred to a sterile 50 ml falcon tube and collected by centrifugation (5 min at 1500 rpm and $4{ }^{\circ} \mathrm{C}$ in a Megafuge 1.0 R). The cell pellet was resuspended in 1.5 ml of ice-cold 1 M sorbitol and stored at $4^{\circ} \mathrm{C}$ for use on the same day.
$80 \mu \mathrm{l}$ of this cell suspension were transferred into a sterile electroporation cuvette with a electrode gap of 2 mm and mixed with 5 to $10 \mu \mathrm{~g}$ of linearised vector

DNA. For electroporation, DNA hast to be salt-free. For BSEP expression in P. pastoris, the pPIC3.5BSEP construct was linearized by restriction digest with Sall and salt/ethanol-precipitated to remove salts. The cells were incubated with the DNA on ice for 5 min and then electroporated for 5 ms at 1500 V . Immediately after, 1 ml of ice-cold 1 M sorbitol was added to the cells by gentle inversion, and $300 \mu \mathrm{l}$ of the cell suspension were plated out on MD agar plates. These are devoid of histidine and select for histidine prototrophy of the transformants by the HIS4 marker on the linearized plasmid that is only maintained in P. pastoris by homologous recombination into the AOX1 locus of the histidine auxotrophic strain GS-115. Transformants that were obtained after 4 days of growth and restreaked onto MD agar for a second round of selection.

2.2.1.8 DNA precipitation by sodium acetate/ethanol

It was found that freshly precipitated DNA resulted in better transformation of S. cerevisae cells. For in vivo homologous recombination, the corresponding fragments were mixed in an equimolar ratio to an amount in the $\mu \mathrm{g}$ range and coprecipitated by addition of $1 / 10$ volume of 3 M sodium acetate and 2 volumes of pure, $-20^{\circ} \mathrm{C}$ cold ethanol followed by thorough mixing. The DNA was allowed to precipitate either at $20^{\circ} \mathrm{C}$ overnight or at $-80^{\circ} \mathrm{C}$ for 1 h . The precipitate was collected by centrifugation for 30 min at 13.000 rpm and $4^{\circ} \mathrm{C}$, and residual salt was washed out with $500 \mu \mathrm{l}$ of $20^{\circ} \mathrm{C} 70 \%(\mathrm{v} / \mathrm{v})$ ethanol. The DNA pellet was dried under the cleanbench for 10 min at room temperature with the reaction tube lying on the side to prevent pellet loss. After that, the DNA was directly resuspended in the 50μ of competent yeast cells und used for transformation. For electroporation, DNA was resuspended in $10 \mu \mathrm{l}$ of sterile dd. water.

2.2.1.9 Plasmid recovery from S. cerevisiae

Yeast cells in the logarithmic growth phase were harvested and the cell wall was digested with Zymolyase 100 T for 30 min at $37{ }^{\circ} \mathrm{C}$ in the presence of 2 mM DTT. The spheroblasted cells were then subjected to chemical lysis as described for E. coli.

2.2.1.10 Plasmid isolation from E. coli

Plasmid isolation was carried with the Qiagen pasmid mini- and midiprep kits and the Macherey-Nagel Nucleobond Xtra Midi kit according the manufacturers' guidelines. E. coli cultures for were either grown overnight at $37{ }^{\circ} \mathrm{C}$ or for 48 h at $30^{\circ} \mathrm{C}$ to allow the generation of enough bacterial mass and plasmid. For plasmid miniprep, 2 ml of cell suspension were either harvested in 2 ml reaction tubes. For plasmid midiprep, 150 ml medium were cultured and harvested in 50 ml falcon tubes. The cell pellets were either directly resuspended and processed or stored at $-20^{\circ} \mathrm{C}$ until preparation. DNA was always resuspended in elution buffer (10 mM Tris/HCl pH 8.5) and stored at $4{ }^{\circ} \mathrm{C}$ for a short period or at $-20^{\circ} \mathrm{C}$ indefinetely. DNA quantity and purity was measured on a Nanodrop ND-1000 spectrophotometer.

2.2.1.11 DNA sequencing

Sequencing of plasmids and PCR products was carried out at the service unit of the Biologisches-Medizinisches Forschungszentrum (BMFZ) at the University of Duesseldorf.
2.2.1.12 Manipulation of DNA with enzymes in vitro and agarose gel electrophoresis Restriction digest of DNA

Restriction endonucleases were either from Fermentas of New England Biolabs and were used according to the manufacturers' guidelines. Analytical restriction digests were regularly performed in microtiter plates in a reaction volume of $10 \mu \mathrm{l}$ with approximately 100 ng of DNA and a maximum of 0.3 units per restriction enzyme. As most restriction endonucleases are delivered in a concentration of 10 units $/ \mu$ l, this corresponds to $0.3 \mu \mathrm{l}$. As a rule, the volume of restriction enzyme stock solution never exceeded $10 \%(\mathrm{v} / \mathrm{v})$ of the final reaction volume as too high glycerol concentrations of glycerol can inhibit restriction enzyme activity. The plates were covered with their lid, after sterile water was pipetted in each of the plates edges to saturate the air and prevent sample evaporation. The plates were sealed with parafilm and put into an incubator at the optimal restriction temperature for 1 h .

Preparative restriction digests were carried out in final volumes that were the double of the used DNA solution to digest. Accordingly, 25 or 30μ l were digested in a final volume of 50 and $60 \mu \mathrm{l}$, respectively. Depending on the amount of enzyme used, preparative digestion was performed for 2 to 4 h or overnight for complete digestion unless a restriction enzyme was used that was prone to star activity upon overdigestion.

Agarose gel electrophoresis of DNA

50X TAE buffer

2 M Tris
1 M acetic acid
100 mM EDTA
(pH 8.1)

EDTA stock
0.5 M EDTA
(adjusted to pH 8)

6X DNA sample buffer

40 \% (v/v) glycerol
0.25 \% (w/v) Bromophenol blue
0.25 \% (w/v) Xylene cyanole
in 10X TAE buffer

For purposes of analysis or purification of digested DNA, samples were mixed with 6X DNA sample buffer to a final concentration of 1 X and separated by agarose gel electrophoresis. DNA fragments were usually separated on $1 \%(\mathrm{w} / \mathrm{v})$ agarose gels (prepared in 1X TAE buffer) at 140 V (about $14 \mathrm{~V} / \mathrm{cm}$) for 30-60 min. Separation of larger fragments was improved by using $0.8 \%(\mathrm{w} / \mathrm{v})$ agarose gels. After electrophoresis, the relevant parts of the gels were incubated in an ethidium bromide bath ($40 \mu \mathrm{l}$ of a $10 \% \mathrm{EtBr}$ stock solution in 400 ml of dd. water) for DNA visualization and documentation on a UV light unit (Chemigenius 2). For the preparative excision of DNA, the gels were exposed to UV light as short as possible (few seconds) to prevent excessive DNA damage. The DNA fragment was then separated from EtBr and agarose by using the Qiagen gel extraction kit. Elution from the spin column was increased by incubation of the membrane with elution buffer for 3 min before elution.

Dephosphorylation of DNA ends

The enzyme calf intestinal alkaline phosphatase (CIAP) was used to remove the terminal 5'-phosphate at the ends of DNA fragments. This prevents a ligation of the dephosphorylated 5^{\prime} strand end to the terminal hydroxyl group of the 3^{\prime} strand of a compatible end. After the restriction digest of a plasmid at a single site, CIAP treatment prevents a religation of the resulting DNA ends. An insert however, can still ligate to such ends as it has intact 5^{\prime}-phosphate-carrying termini.

Ligation of DNA

Depending on the concentration of the fragments to be ligated, the reaction volume was between 10 and $20 \mu \mathrm{l}$. A typical reaction consisted of 50-100 ng total DNA in an $15 \mu \mathrm{l}$ reaction with 0.5 to $1 \mu \mathrm{l}$ of T4 DNA ligase and corresponding ligase buffer from Fermentas that was allowed to proceed for 1 to 2 h at room temperature before heat inactivation of the enzyme at $65{ }^{\circ} \mathrm{C}$ for 10 min . 1 to $5 \mu \mathrm{l}$ of this mixture were then used for chemical transformation of E. coli cells.
2.2.1.13 Generation of a system of expression cassette vectors for chromosomal overexpression of genes in S. cerevisiae
$10 \mu \mathrm{l}$ of a plasmid miniprep of the pRE2 vector were digested in $50 \mu \mathrm{l}$ reaction volume with 20 units Nsil and 20 units Pacl for 3 h at $37^{\circ} \mathrm{C}$. The vector backbone was then purified on a preparative $0.8 \%(w / v)$ agarose gel and was gel extracted. DNA was eluted in 30μ l elution buffer. Each pair of the forward and reverse oligonucleotides encoding the different tags, 3X glycine linker, optional Sfil restriction site and factor Xa protease cleavage site was pooled ($1 \mu \mathrm{l}$ per oligonucleotide solution $100 \mathrm{pmol} / \mu \mathrm{l}$ in water, in $100 \mu \mathrm{l}$ X PNK reaction buffer), heated to $94{ }^{\circ} \mathrm{C}$ in the metal block of a thermal incubator for 1 min , and allowed to anneal by slow passive cooling of the metal block to room temperature for 30 min . The ends of $20 \mu \mathrm{l}$ annealed cassette oligonucleotide were then phosphorylated by the addition of $1 \mu \mathrm{l}$ of T4 polynucleotide kinase and incubation for 1 h at $37^{\circ} \mathrm{C}$. After inactivation of the enzyme for 20 min at $65{ }^{\circ} \mathrm{C}$, the finished cassette fragment was ligated into the double-digested pRE2 backbone ($1 \mu \mathrm{l}$ cut pRE2, $1 \mu \mathrm{l}$ cassette fragment in $15 \mu \mathrm{IX}$ ligase reaction buffer and $1 \mu \mathrm{l}$ T4 DNA ligase) for 2 h at room temperature. The
ligation mixture was inactivated for 10 min at $65^{\circ} \mathrm{C}$, and $5 \mu \mathrm{l}$ were used to transform E. coli strain DH5a. Transformants were selected on LB agar supplemented with 100 $\mu \mathrm{g} / \mathrm{ml}$ ampicilline, and plasmid preparations from these were subjected to analytical restriction digest with Nsil and Pacl. Positive clones were digested into backbone and cassette insert.

2.2.1.14 The Sfil cloning strategy

Principle

For Sfil-mediated cloning of any gene of interest (GOI), a PCR product is generated from the GOI with primers that each encode a Sfil restriction site on their 5' overhangs. The Sfil sequence on the p10-and p14HisSfil plasmids is:

5'-GGCCGCTC/TGGCC-3'.

Primer design

Since Sfil digestion takes place at $50^{\circ} \mathrm{C}$ the DNA ends of the GOI PCR product are expected to "breathe", i. e. to partially become single-stranded. To prevent this, the PCR primers should be designed with some additional G and C bases upstream of their Sfil restriction site. Examples are given in the oligonucleotide table in the Materials section for MRP2 and the lacZ fragment.

2.2.1.15 Blue/white screening of E. coli colonies

LB-IPTG/X-Gal agar (25 mI)

$100 \mu \mathrm{l} 2$ \% (w/v) X-Gal in dimethyl formamide
$40 \mu \mathrm{l} 0.1 \mathrm{M}$ IPTG

The presence of the lacZ insert in p14HisSfil was tested blue/white screening. E. coli XL1blue cells were chemically tranformed with the inactivated ligation reaction and plated out onto LB agar containing IPTG and X-Gal. The lacZ-encoded beta galactosidase was induced by IPTG and catalyzed the formation of a blue dye from X-Gal in cells that carried the plasmid with the insert.
2.2.1.16 Construction of MDR3 and BSEP expression vectors by homologous recombination and the recombination-based BSEP expression screen

Generation of PCR products and preparation of vectors for homologous recombination in S. cerevisiae

The YEpHIS and YEpMDR1HIS vectors [182] were the kind gift of Marwan Al-Shawi. All PCR reactions were performed with the Phusion \circledR^{\circledR} DNA polymerase in HF buffer according to the manufacturers recommendations. $50 \mu \mathrm{l}$ reactions usually contained $1.5 \mu \mathrm{l}$ of DMSO, except for yeast colony PCR. PCR conditions were: 2 min initial denaturation, 50 sec cycle denaturation, 50 sec annealing, 20 sec per kbp of extension for 35 cycles, followed by 7 min of final extension. For homologous recombination, all vectors were linearized by restriction digest as indicated during which they also were dephosporylated with calf intestinal alkaline phosphatase (Fermentas). YEpMDR1HIS was double-digested with BamHI and BsmI, YEpHIS was cut with BamHI and Mlul to remove the C-terminal his tag [182]. The oligonucleotides YEpNHISFor and YEpNHISRev encoding an N-terminal his ${ }_{14}$ tag followed by a factor X_{a} cleavage site were mixed in equimolar amounts, heated to 95 ${ }^{\circ} \mathrm{C}$ for 5 min and allowed to anneal by slow cooling to room temperature. After T4 polynucleotide kinase (NEB) treatment, the phosphorylated synthetic insert was ligated into the gel-purified linearized YEpHIS plasmid. BSEP PCR products with fitting overlaps were generated with the primer pairs BSEP-YEpHISN-S1 / -S2 and BSEP-YEpHISC-S1 / -S2, respectively.

2.2.1.17 The two-step, recombination-based BSEP expression screen

For the two-step expression screen, p426-GPD, -TEF, -CYC1, -MET25 from ATCC vector set No. 87669 [208], and p426-GAL1 from set No. 97670 [209] were used. Preparative digest of the p426-MET25 plasmid was carried out in a volume of $80 \mu \mathrm{l}$ with 20 units of the indicated restriction enzymes following the manufacturers' recommendations. BSEP cDNA was amplified with primer pair BSEP-p426-CHis-HRS1 / -S2 for homologous recombination into the first plasmid of the set, p426-MET25. All DNA fragments were gel-purified, mixed together in equimolar amounts (final amount before precipitation: $2-4 \mu \mathrm{~g}$), and co-precipitated with salt / ethanol. The pellet was briefly dried and directly used to transform 50μ l of competent yeast cells.

Transformants arising from the selection procedure were directly used to screen the BSEP expression from YEX whole cell lysates.

2.2.1.18 Plasmid recovery from S. cerevisiae

Small- (5-10 ml for E. coli transformation) or large-scale (0.5-1 I for obtaining preparative plasmid amounts) overnight yeast liquid yeast cultures were harvested, washed in cold water once, and then resuspended in Zymolyase incubation buffer (see above, with 1.2 M sorbitol). The yeast cell wall was digested with occasional gentle inversion for 30 min at $37^{\circ} \mathrm{C}$, cells were then lysed by alkaline lysis generally as described in [212], with the exception that the Macherey-Nagel midiprep kit was used. 0.5-1 μ l of this preparation was used to transform chemically competent E. coli strain XL1blue. After heat shock, bacteria were shaken for 1 h at $30{ }^{\circ} \mathrm{C}$ and 200 rpm to prevent the loss of unstable construct. After plating out on low salt LB media containing $50 \mu \mathrm{~g} / \mathrm{ml}$ Carbenicillin, plates were incubated at $30^{\circ} \mathrm{C}$. Carbenicillin allows for a tighter and longer lasting selection as it hydrolyzes much slower than ampicillin. 150 ml low salt LB with Carbenicillin were then directly inoculated with a single colony and allowed to grow for 36 to 48 hours at $30^{\circ} \mathrm{C}$ and 200 rpm . Cells were harvested and plasmid prepared from these. The plasmids were sequence-verified.

2.2.1.19 Isolation of genomic DNA from S. cerevisiae

Total genomic DNA was isolated from S. cerevisiae using the DNeasy Blood and Tissue kit (Qiagen) and the additional kit protocol "Purification of total DNA from yeast".

2.2.1.20 Polymerase chain reaction

The polymerase chain reaction was used to amplify DNA sequences for analytical detection or recombinant DNA work. The Phusion HiFi DNA polymerase was used to minimize nucleotide misincorporation during PCR. PCR reactions were set up on ice in total volumes of 50 or $30 \mu \mathrm{l}$ according to the product guidelines.

	$\underline{50 \mu \mathrm{R} \times \mathrm{n}}$	$30 \mu \mathrm{Rxn}$
5 XHF buffer (final conc. $1.5 \mathrm{mM} \mathrm{Mg}{ }^{2+}$)	$10 \mu \mathrm{l}$	$6 \mu \mathrm{l}$
10 mM dNTPs	$1 \mu \mathrm{l}$	$0.6 \mu \mathrm{l}$
optional: DMSO	$1.5 \mu \mathrm{l}$	$0.9 \mu \mathrm{l}$
optional: $50 \mathrm{mM} \mathrm{MgCl}{ }_{2}$	$1 \mu \mathrm{l}$	$0.6 \mu \mathrm{l}$
Primers ($10 \mathrm{pmol} / \mathrm{\mu l}$)	$3 \mu \mathrm{leach}$	$1.8 \mu \mathrm{l}$
Template	10-50 ng	10-50 ng / one
		small bacterial colony
water, molecular biology grade	to $49.5 \mu \mathrm{l}$	to $29.7 \mu \mathrm{l}$
Phusion polymerase	0.5μ	$0.3 \mu \mathrm{l}$

The PCRs were performed as hot start, except for colony PCR setups. The hot start procedure was found to improve yields, especially with primers that have long and overlapping 5'-ends.

Yeast colony PCR

Freshly growing transformant colonies were picked and restreaked onto selective agar plates. The rest of the material was treated with Zymolyase for 45 min at $37{ }^{\circ} \mathrm{C}$ in $50 \mu \mathrm{l}$ reaction volume (0.1 M sodium phosphate buffer $\mathrm{pH} 7.4,2 \mathrm{mM}$ DTT, and 5 $10 \mathrm{mg} / \mathrm{ml}$ of Zymolyase T-100 (ICN)). After heating the reactions to $95^{\circ} \mathrm{C}$ for 10 min , the material was frozen at $-20^{\circ} \mathrm{C}$ for 10 min and thawed again. $5 \mu \mathrm{l}$ of this were used as template for colony PCR ($30 \mu \mathrm{l}$ reaction in Phusion HF buffer: 2 mM final conc. of $\mathrm{MgCl}_{2}, 20 \mathrm{pmol} /$ primer, $200 \mu \mathrm{M}$ dNTPs, 1.5 units Phusion \circledR^{\circledR} DNA polymerase).

Restriction analysis of colony PCR products from the BstBI mutagenesis
$10 \mu \mathrm{l}$ of the reaction was directly digested with BstBI (15 $\mu \mathrm{l}$ reaction, 8 units restriction enzyme) for 1 h at $37^{\circ} \mathrm{C}$ and then resolved on a 1% agarose gel.

2.2.1.21 Standard site directed mutagenesis (SDM)

Classic site-directed mutagenesis was performed with the Quikchange II XL sitedirected mutagenesis kit according the manufacturers' protocol for silent removal of the Sfil sites in the MRP2 cDNA and the plasmid backbone of p10- / p14HisSfil.

2.2.1.22 The new, E. coli independent site-directed mutagenesis procedure

For introduction of the missense, BstBI mutation into BSEP constructs, the mutagenesis primer pair BSEP-BstBlmut-S1 / -S2 was used. Cycling conditions were as in the classic SDM protocol, with 18 cycles to minimize PCR-induced errors, and with the annealing temperature strictly being kept at $60^{\circ} \mathrm{C}$ to ensure the generation of ds-ended mutagenesis product (for a detailed description of the procedure, see Results 3.10). Reactions were set up with the Phusion DNA polymerase, as this proofreading enzyme has a low error rate practically identical to the enzyme used in the Stratagene SDM kits (according to the manufacturers' datasheets: 4.4×10^{-7} for Phusion High Fidelity Polymerase, 4.3×10^{-7} for PfuUltra HF Polymerase). Extension time was 1 min per kb to allow for complete extension. This seems to be a very important factor in the successful generation of mutagenesis product. The recommended elongation time for Phusion polymerase is $15-30$ seconds per kbp, and an extended incubation at the elongation step was found to be paramount for a successful exponential product generation, probably because it ensures the quantitative integrity of the ends that serve as priming sites in subsequent cycles. 10 ng of template was used, and the reaction was initiated after heating the reaction to $98{ }^{\circ} \mathrm{C}$ (hot start) with $0.5 \mu \mathrm{l}$ of Phusion polymerase. The finished reaction was precipitated with sodium acetate and ethanol, and directly resuspended in 20 ul (= 4 OD_{600} equivalents) of fresh competent yeast cells in LATE buffer. This assures an optimal ratio of mutagenesis product to yeast cells. The transformation was carried out as described above by addition of 120μ I PLATE buffer (40% (v / v) PEG 4000, 0.1 M lithium acetate, 10 mM Tris- $\mathrm{HCl} \mathrm{pH} 8,1 \mathrm{mM}$ EDTA).
2.2.1.23 Drug agar resistance assays of S. cerevisiae
Compound
Taurocholate
Taurodeoxycholate
FK506
Cycloheximide
Fluconazol
Ketoconazole
Doxorubicin
Lovastatin
Pravastatin
*hydrolyzed at $60^{\circ} \mathrm{C}$ for 1 h as described in [213]

Solvent

dd. sterile water
dd. sterile water
DMSO
dd. sterile water
DMSO
DMSO ethanol

15 \% (v/v) ethanol, 0.25 \% (w/v) NaOH^{*}
dd. sterile water

Drug agar plates were prepared as follows: the indicated liquid agar medium was allowed to cool down to about $60^{\circ} \mathrm{C}$ and kept liquid by slow mixing on a magnetic stirrer (a stirring bar was autoclaved in the agar). Serial dilutions of the tested drugs were made either in sterile dd. water or the indicated solvent. For each concentration, the same volume of drug solution was then pipetted into a sterile 50 ml falcon tube, mixed with some of the warm medium by gentle inversion and then filled up to 50 ml . The same volume of solvent was used as a control. The amount of ethanol or DMSO never exceeded $0.5 \%(\mathrm{v} / \mathrm{v})$. After mixing by repeated careful inversion to avoid air bubbles, the drug-containing medium was poured in two equal parts into two petri dishes. The drug agar plates were allowed to solidify and stored at room temperature in the dark until their use on the same day.
S. cerevisiae cells from 5 ml overnight cultures were used to inoculate 5 ml of liquid medium to an OD_{600} of 0.2 . At the OD_{600} of 1 , the cultures were put on ice until all strains for an experiment were collected. If the time between the first and the last culture was more than an hour, the experiment was abandoned and repeated. For this reason, every strain was inoculated twice. Aliquots of the cultures were diluted to an OD_{600} of 0.2 in sterile ice-cold reaction caps, and from these, serial 1:10 dilutions were made in the culture medium. Using a printed template, $3 \mu \mathrm{l}$ aliquots of the serial dilutions were spotted onto the different drug agar plates.

2.2.2 Methods of protein biochemistry

2.2.2.1 Preparation of whole cell lysates of S. cerevisiae by chemical lysis

YEX (Yeast EXtraction) buffer [214] $50 \%(w / v)$ trichloroacetic acid (TCA)
1.85 M NaOH
7.5 \% β-ME
double-distilled water

$1 \mathrm{M} \mathrm{Tris/HCl} \mathrm{pH} 8$

All solutions must be ice-cold. $2 \mathrm{OD}_{600}$ of cells were harvested by centrifugation for 1 min at 13.000 rpm and $4^{\circ} \mathrm{C}$ in a tabletop microcentrifuge. The cell pellet was washed once in 1 ml water, then resuspended in the same volume of water. $150 \mu \mathrm{l}$ of YEX buffer were added, the samples were briefly, but thoroughly mixed and incubated for 10 min on ice. After addition of $150 \mu \mathrm{l}$ of $50 \%(\mathrm{w} / \mathrm{v})$ TCA and mixing as above, they were incubated for an additional 10 min in ice. Precipitated proteins were collected by centrifugation for 10 min at 13.000 rpm and $4^{\circ} \mathrm{C}$, and supernatants were discarded. Initially, 1 ml of ice-cold acetone was then used to remova any remaining TCA. Since this made the protein pellets more fragile and resulted in random loss of sample, this step was changed: after removal of the supernatant, the reaction tubes were allowed to dry for 10 min upside down on tissue paper. Residual TCA was neutralized by addition of $10 \mu \mathrm{l}$ of 1 M Tris $/ \mathrm{HCl} \mathrm{pH} 8$, and the samples were resuspended in $40 \mu \mathrm{l}$ of 1X SDS special sample buffer per $O D_{600}$ equivalent. Samples were incubated at 65 ${ }^{\circ} \mathrm{C}$ for 10 min , briefly allowed to cool down and cellular debris was removed by short centrifugation (30 sec at 13.000 rpm at room temperature). $20 \mu \mathrm{l}$ of lysate corresponding to $0.5 \mathrm{OD}_{600}$ equivalents of cells were then analyzed by SDS-PAGE.
2.2.2.2 Sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) of proteins

Separating gel buffer
SDS $4 \mathrm{~g} / \mathrm{L}$
Tris-HCl 1.5 M pH 8.85

Stacking gel buffer

SDS 4 g/L
Tris-HCl 0.5 M pH 6.8

10X SDS electrophoresis buffer
Glycine 1.9 M
Tris-HCI 0.25 M
SDS $10 \mathrm{~g} / \mathrm{L}$
final pH of this solution is 8,8 and does not need to be adjusted.

5X SDS special sample buffer [214]

10 ml Stacking gel buffer
10 ml 16 \% (w/v) SDS
5 ml 0.2 \%(w/v) Bromophenol blue
8 M Urea (concentration in 50 ml final volume)

Components are mixed in an 50 ml falcon tube and then Urea is added.

Finally, glycerol is added to 50 ml final volume.

Western blot transfer buffer

100 ml 10X SDS electrophoresis buffer 700 ml double-distilled water 200 ml methanol

Reducing SDS special sample buffer $960 \mu \mathrm{LX}$ SDS special sample buffer $40 \mu \mathrm{l}$ 1M DTT
(stored at $-20^{\circ} \mathrm{C}$)

Separating gel (for 9 gels)

	$\frac{7 \%}{38.75 ~ \mathrm{ml}}$	$\frac{8 \%}{36.25 \mathrm{ml}}$	$\frac{9 \%}{33.75 \mathrm{ml}}$	$\frac{10 \%}{31.25} \mathrm{ml}$	$\frac{12 \%}{26.25} \mathrm{ml}$	$\frac{15 \%}{18.75 \mathrm{ml}}$
dd. water Separating gel buffer	18.75 ml					
Acrylamide/ Bis- acrylamide	17.5 ml	20 ml	22.5 ml	25 ml	30 ml	37.5 ml
(37.5:1)						
$10 \%(\mathrm{w} / \mathrm{v})$ APS $300 \mu \mathrm{l}$ $300 \mu \mathrm{l}$ $300 \mu \mathrm{l}$ TEMED	$70 \mu \mathrm{l}$	$70 \mu \mathrm{l}$	$70 \mu \mathrm{l}$	$70 \mu \mathrm{l}$	$300 \mu \mathrm{l}$	$300 \mu \mathrm{l}$
		$70 \mu \mathrm{l}$	$70 \mu \mathrm{l}$			

Stacking gel (for 9 gels)

	$\frac{4.5 \%}{5 \mathrm{ml}}$
Stacking gel buffer	5.25 ml
Acrylamide/Bisacrylamide	
(37.5:1) dd. water	28 ml
10 \% (w/v) APS	$210 \mu \mathrm{l}$
TEMED	$70 \mu \mathrm{l}$

APS and TEMED were added to initiate polymerization. The SDS gels were cast (40 min polymerization for separating, 1 h for stacking gel) and stored up to one week at $4^{\circ} \mathrm{C}$ wrapped in wet paper. For BSEP and MDR3, 7% SDS gels were used. Since most membrane proteins irreversably aggregate at high temperatures, samples were incubated in reducing SDS special sample buffer at $65{ }^{\circ} \mathrm{C}$ for 10 min . After brief centrifugation to remove insoluble material, the protein samples were separated at 150 V using 1X SDS electrophoresis buffer.

2.2.2.3 Coomassie staining of SDS gels

Coomassie staining solution
100 ml glacial acetic acid
500 ml dd. water
400 ml methanol
0.25 \% (w/v) Coomassie brilliant blue R-250

Destaining solution

100 ml glacial acetic acid
500 ml dd. water
400 ml methanol

Proteins in SDS gels were stained by incubation in Coomassie staining solution for 30 min to 1 h . The gels were rinsed briefly with dd. water and incubated in several rounds of destain solution until protein bands were clearly visible against the background.

2.2.2.4 Silver staining of SDS gels

Fixing solution

30 \% (v/v) ethanol
10 \% (v/v) glacial acetic acid

Silver nitrate solution

$0.5 \mathrm{~g} / \mathrm{L} \mathrm{AgNO}_{3}$
(immediately before use, add $12.5 \mu \mathrm{l}$
37 \% (wt/wt) formaldehyde)
$37 \%(w / v)$ Formaldehyde solution

Thiosulfate buffer

0.1 M sodium acetate pH 6

30 \% (v/v) ethanol

Developing solution

2.5 \% (wt/v) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(immediately before use, add $25 \mu \mathrm{l}$ of 37 \% (wt/wt) formaldehyde)

Glacial acetic acid

After electrophoresis, SDS gels were fixed for 15 min under gentle agitation in fixing solution. After incubation in thiosulfate buffer for 15 min , the gels were washed 2×10 min in dd. water. The gels were incubated for 25 min in silver nitrate solution, washed in water for 1 min and then submerged in developing solution. Development of bands was stopped by addition of 1 ml glacial acetic acid, a few minutes of gentle agitation, and transfer into dd. water. 50 ml per gel were used of each solution.

2.2.2.5 Western blot and immunodetection of proteins

Western blot transfer buffer

100 ml 10X SDS gel electrophoresis buffer 700 ml dd. water 200 ml methanol

TBS(-T)

20 mM Tris/HCl pH 8
250 mM NaCl
(0.1 \% (v/v) Tween 20)

Ponceau S solution

0.1 \% (w/v) Ponceau S in

3 \% TCA

Blocking solution
5 \% (w/v) non-fat dried milk powder in
TBS-T
0.05 \% (w/v) sodium azide

Stripping buffer

$15 \mathrm{~g} / \mathrm{L}$ glycine
$1 \mathrm{~g} / \mathrm{L}$ SDS
1 \% (v/v) Tween 20
pH adjusted to 2.2

Proteins separated by SDS-PAGE were transferred onto nitrocellulose membranes by semi-dry Western blot transferin a Biorad apparatus. For this, the glass plates surrounding the polyacrylamide gels were gently pried apart with a broad plastic wedge or spatula SDS, and the gels were sandwiched between nitrocellulose membranes and presoaked Whatman filter paper in the following order, from bottom to top: 3 layers of whatman paper, the nitrocellulose membrane, the SDS gel including the stacking gel part, and three layers of whatman paper. For optimal
electrotransfer of the proteins, the filter paper and the membranes were cut to the gel size and extensively soaked in transfer buffer for 10 min. The stacking gel area was also transferred onto the membrane to check for possible membrane protein aggregation, which however was not an issue due to use of the SDS special sample buffer. Proteins were electrotransferred at 110 mA per gel for 1.5 h to achieve maximum transfer.

Ponceau S staining

The transfer was checked by reversible Ponceau S staining of the nitrocellulose membrane after blotting. The membranes were covered in Ponceau S solution and incubated for 3-5 min under gentle agitation. The solution was recovered for reuse, and excessive stain was removed by repeated gentle rinsing with dd. water. Complete removal of the stain was achieved by simple blocking of the membranes in blocking solution.

Immunodetection of nitrocellulose membranes

The membranes were blocked for 30 min in blocking solution. Primary antibodies were used in volumes of 10 ml of blocking buffer per membrane at concentrations of 1:2500 (K24), 1:2000 (K168), 1:1000 (C219), 1:10.000 (anti Pdr5), and 1:1500 (anti Dpml), respectively. The blocked membranes were incubated in the primary antibody for 1 h , rinsed shortly with TBS-T after antibody solution recovery (the primary antibody solutions can be reused several times and were stored at $4{ }^{\circ} \mathrm{C}$ between uses), and washed three times in TBS-T for 5 min under gentle agitation. Then the membranes were incubated with the appropriate secondary antibodies at a dilution of 1:10.000 in 10 ml of blocking solution without sodium azide for 1 h . Sodium azide inhibits the horseradish peroxidase that is coupled to the secondary antibodies for detection. After 2 wash steps in TBS-T and one wash step in TBS, proteins marked by antibodies were detected with the ECL Advanced Western blot detection kit according to the manufacturers' guidlines. All incubation and washing steps were under gentle agitation.

His tag immunodetection

The pentaHis antibody from Qiagen was used to detect his-tagged proteins according to the manufacturers' guidlines, with the following deviations: membranes were blocked in blocking solution instead of TBS-T with $3 \%(v / v)$ BSA. After blocking, membranes were rinsed briefly in TBS-T, then washed $2 \times 5 \mathrm{~min}$ int TBS-T and $1 \times 5 \mathrm{~min}$ in TBS. After incubation in the primary antibody solution (pentaHis diluted 1:1000 in TBS + $3 \%(w / v)$ BSA), membranes were subjected to the same washing regime and incubated with the secondary antibody solution (goat antimouse, HRP-coupled, diluted 1:10.000 in TBS + 10 \% non-fat dried milk). The washing regime was repeated, and the blot membranes were detected as described above.

Stripping and reprobing of membranes

During stripping, bound antibodies and detection reagents are removed from the blot membrane. The binding of the antibodies is disrupted by the low pH of the solution. As an internal control for some of the Western blots that were made of the sucrose gradients to investigate the subcellular localization of the human ABC transporters in S. cerevisiae, these membranes were stripped by two incubation steps with 15 ml of stripping buffer for 10 min . After this, membranes were washed $2 \times 10 \mathrm{~min}$ in TBS, then $2 \times 5 \mathrm{~min}$ in TBST. After incubation in blocking solution for 30 min , the membranes were ready for redetection. In the case of the sucrose gradients, membranes were reprobed with anti Dpml.

2.2.2.6 Subcellular fractionation of membranes from whole S. cerevisiae Cells

Incubation medium

200 mM Tris/HCl pH8.0
20 mM EDTA
1% (v/v) β-mercapto ethanol
$5 \mathrm{mM} \mathrm{NaN}_{3}$
5 mM NaF

Spheroblast medium

SD or YPD medium adjusted to
1 M sorbitol
5 mM NaN3
5 mM NaF
(150 ml per cell pellet: 50 ml for cell wall
(50 ml per cell pellet)

Hyposmotic buffer
50 mM Tris/HCL pH7.5
200 mM Sorbitol
1 mM EDTA
one Roche Protease inhibitor cocktail tablet per 50 ml ($1 \mu \mathrm{~g} / \mathrm{ml}$ Aprotinin, $1 \mu \mathrm{~g} / \mathrm{ml}$ Leupeptin, 1 $\mu \mathrm{g} / \mathrm{ml}$ Pepstatin, $5 \mu \mathrm{~g} / \mathrm{ml}$ Antipain, 1 mM Benzamidin, 1 mM PMSF)
(4-6 ml per cell pellet, can be stored at $20^{\circ} \mathrm{C}$)
digestion, $2 \times 50 \mathrm{ml}$ for wash steps)

Sucrose gradient

Sucrose solutions 22-60 \% (w/w) in 10 mM HEPES/KOH pH7.2
1 mM EDTA
0.8 M sorbitol

Gradients were always pipetted in duplicates for balancing during the ultracentrifugation step. Concentration steps were as follows:

0.5 ml	60%
1 ml	40%
1 ml	37%
1.5 ml	34%
2 ml	32%
2 ml	29%
1.5 ml	27%
1.5 ml	22%

500 ml yeast cultures were harvested at an OD_{600} of 1 by centrifugation at 4000 rpm and $4{ }^{\circ} \mathrm{C}$ (MegaFuge 1.0 R) for 11 min and. The pellet was resuspended in 50 ml Incubation medium and incubated with $0.9 \mathrm{mg} / \mathrm{ml}$ Lysing Enzymes. The cells were then incubated for 30 min at $30^{\circ} \mathrm{C}$, cooled on ice and washed twice with ice-cold Spheroblast medium (4000 rpm, 5 min at $4^{\circ} \mathrm{C}$). All subsequent steps were carried out at $4{ }^{\circ} \mathrm{C}$. Spheroblasts were resuspended in $4-6 \mathrm{ml}$ ice-cold Hypoosmotic buffer and disrupted in a small Dounce homogenizer with 15 strokes. This lysate was then transferred into 15 ml Falcon tubes and centrifuged for 5 min at 500 xg to remove cellular debris. The supernatant was centrifuged for 10 min at $13.000 \times \mathrm{g}(10.500 \mathrm{rpm}$ in A8.24 rotor). Complete membranes were then harvested from the resulting supernatant by ultracentrifugation ($100.000 \times \mathrm{g}$, Ti60 rotor) for 1 h . During the centrifugation step, the gradients were pipetted. Membrane pellets were

Abstract

resuspended in 2 ml ice-cold Hypoosmotic buffer with protease inhibitor cocktail and carefully layered on top of the sucrose gradient. The different membrane species were then separated by ultracentrifugation for 18 h at $130.000 \times \mathrm{g}(32.100 \mathrm{rpm}$ in a SW40Ti rotor). The gradients were separated into $600 \mu \mathrm{l}$ aliquots by carefully pipetting from the top. Equal volumes were then directly analyzed by SDS-PAGE and Western blot.

2.2.2.7 Preparation of whole cell membranes from S. cerevisiae

1 M Tris/acetate pH 7.5
 Acid washed glass beads (in water)
 500 mM EDTA pH 8
 (adjusted with NaOH)
 TEG
 10 mM Tris/acetate pH 7.5
 0.2 mM EDTA
 20 \% (v/v) glycerol

Membrane buffer

20 mM Tris/Hcl pH 8
75 mM NaCl
15 \% (v/v) glycerol

All steps of this procedure were carried out at $4{ }^{\circ} \mathrm{C}$ with ice-cold buffers. S. cerevisiae cells carrying YEpHISBSEP or -MDR3 were grown in 10 L DO-LEU medium supplemented with $10 \%(w / v)$ glycerol overnight at $25^{\circ} \mathrm{C}$ and 200 rpm shaking. The next morning, at an OD_{600} of 1 to 1.5 , they were harvested by centrifugation for 11 min at $6000 \times \mathrm{g}$. The cell pellet was washed once in ice-cold dd. water and cells were stored in 50 ml falcon tubes at $-20^{\circ} \mathrm{C}$ until use.

For membrane preparation, frozen cell pellets from 10 L were dislodged from their falcon tube with 20 ml of cold dd. water on a rotational shaker. Pellets were pooled in a glass cylinder and filled up to 84 ml , then 5 ml 1 M Tris/acetate pH 7.5 and 1 ml 500 mM EDTA pH 8 were added. Cells were disrupted in a bead beater (Biospec): the precooled container unit was first filled with 200 ml of acid-washed glass beads, then two protease inhibitor cocktail tablets and the cell suspension (cell
pellets don't need to be completely dissolved) were added. The rest of the glass beads was added, and the remaining space of air in the container was filled with a bit of ice-cold dd. water. The container was closed, and the cells were disrupted by 5 cycles of a 1 min burst followed by 1 min of cooling phase to prevent sample overheating. The lysate and glas beads were separated by gentle vacuum filtration though a porous glass filter, and the beads were washed twice with 30 ml of TEG buffer. Cell debris of the pooled lysate was removed by centrifugation for 10 min at 5.000 x g. Whole cell membranes were collected from the supernatant by ultracentrifugation (1.5 h at 180.000 xg in a Ti60 rotor) The Pellet was resuspended in 10 ml membrane buffer with a Dounce homogenizer, snap-frozen in liquid nitrogen, and stored at $-80^{\circ} \mathrm{C}$.

2.2.2.8 Preparation of highly enriched plasma membranes

1 M sodium acetate
 2.5 M Tris/acetate pH 7.5
 (pH 5.2)

50 mM HEPES pH 7

(one tablet of protease inhibitor cocktail
in 50 ml)

This method is a combination of two preparation methods by L. Serrano [215] and A. Goffeau [216,217] and was initially developed for selective enrichment of the S. cerevisiae ABC transporter Pdr5 [205]. All steps were carried out at $4^{\circ} \mathrm{C}$ and with icecold buffers. One preparation usually was from cell pellets of 4 L culture. Cells were grown, harvested and disrupted as in 2.2.2.7. Cell debris was removed in three centrifugations: $2 \times 5 \mathrm{~min}$ at $1.000 \times \mathrm{g}, 1 \times 5 \mathrm{~min}$ at $3.000 \times \mathrm{g}$. The resulting supernatant was centrifuged for 40 min at $20.000 \times \mathrm{g}$, and the resulting pellet was resuspended in 12 ml TAE buffer with protease inhibitor cocktail. The suspension was adjusted to a protein concentration of $5 \mathrm{mg} / \mathrm{ml}$. Under constant mixing on a magnetic stirrer, this suspension was brought to a pH of 5.2 with 1 M sodium acetate. The acidification results in the massive precipitation of mainly mitochondrial membranes. The precipitate was immediately removed by centrifugation for 5 min at $6.900 \times \mathrm{g}$, and the supernatant was quickly adjusted to pH 7.5 with 2.5 M Tris/acetate buffer. Highly enriched plasma membranes were collected by centrifugation for 30
min at $26.500 \times \mathrm{g}$ and resuspended in $1-2 \mathrm{ml}$ of 50 mM HEPES pH 7 with protease inhibitor cocktail. The concentration was adjusted to $10 \mathrm{mg} / \mathrm{ml}$ and the suspension was snap-frozen in aliquots and stored at $-80^{\circ} \mathrm{C}$

2.2.2.9 Protein quantification using the Bradford Assay

The protein content of samples was measured using the Coomassie Plus protein assay reagent kit (Biorad) which is based on the method of Bradford [218]. Samples were taken in several dilutions made with their buffer, and this buffer served as the empty control. Briefly, $10 \mu \mathrm{l}$ of diluted protein sample or control were pipetted in duplicates into flat bottom, 96 well plates and mixed with $200 \mu \mathrm{l}$ of the assay reagent. The plates were covered for protection against dust, and colour development was allowed for 8 min at room temperature. Measurements were taken on a multiwell plate reader (Polarstar Galaxy) at 562 nm . Multiple serial dilutions of BSA in water were used as a quantitative reference. Only sample dilutions that gave values in the linear area of the BSA reference curve were used to calculate sample protein concentration.

2.2.2.10 Solubilization of BSEP and MDR3

Membrane proteins were solubilized from plasma membrane preparations for the initial affinity purifications of BSEP and MDR3. For the solubilization trials for BSEP and MDR3 from purified plasma membrane purifications, or MDR3 from whole cellular membranes, $300 \mu \mathrm{l}$ aliquots of the respective membrane preparation at the indicated concentration were brought to their final detergent concentration from 10% (w / v) freshly made stock solutions (prepared in dd. water) and incubated for 1 h at 4 ${ }^{\circ} \mathrm{C}$ on an overhead tumbler under slow inversion. Insoluble material was pelleted by ultracentrifugation (1 h at 180.000 g and $4^{\circ} \mathrm{C}$), and the supernatant was transferred into a reaction tube, while the pellet was resuspended in 300μ l of membrane buffer. Equal volumes of both supernatant and resuspended pellet were then analyzed by SDS-PAGE and Western blot for solubilization efficiency. For the preparative purification of MDR3, whole cell membranes were adjusted to $2 \mathrm{mg} / \mathrm{ml}$ with membrane buffer, and Fos-choline was added from a $10 \%(\mathrm{w} / \mathrm{v})$ stock solution to a final concentration of $0.5 \%(\mathrm{w} / \mathrm{v})$. Membranes were solubilized for 1 h at $4{ }^{\circ} \mathrm{C}$ under gentle stirring, and insoluble material was removed by ultracentrifugation (1 h at
180.000 g and $4^{\circ} \mathrm{C}$). The supernatant contained the solubilized material and was used for affinity purification.

2.2.2.11 Purification of human MDR3 by IMAC on ÄKTA systems

Buffer A

20 mM Tris/Hcl pH 8
75 mM NaCl
15 \% (v/v) glycerol
0.001325 \% (w/v) Fos-choline 16

10 mM imidazole
Imidazole stock solution
500 mM imidazole pH 8
(adjusted with NaOH)

All steps were carried out at $4{ }^{\circ} \mathrm{C}$ and with precooled buffers. A 5 ml IMAC column equilibrated in 100 mM cobalt chloride was used to purify solubilized MDR3. The supernatant from the Foscholin 16 solubilization was adjusted to 10 mM imidazole and applied to the column at a flow rate of $2 \mathrm{ml} / \mathrm{min}$, and the flow-through was collected. The column was washed with buffer A until a stable baseline was reached, and proteins were eluted in 1 ml fractions in steps of $20,40,60,80$, and 100% (fraction of Buffer B mixed into Buffer A, corresponding to 58, 116, 174, 232, and 300 mM imidazole concentration, respectively).

2.2.2.12 Protein concentration using Amicon filter devices

An 15 ml Amicon spin concentrator with a molecular weight cutoff of 100 kDa was prewetted with dd. water and then preequilibrated with Buffer A by centrifugation at 4000 rpm at $4^{\circ} \mathrm{C}$ (Megafuge 1.0R). The sample was concentrated in the equlibrated unit in centrifugation steps of 15 min until the desired concentration was reached. For the preparative MDR3 purification, all fractions from the protein elution peaks 2-4 were pooled and concentrated up to a volume of $250 \mu \mathrm{l}$.

2.2.2.13 Gel filtration of affinity-purified MDR3

A Superdex 200 10/300 GL gel filtration column was preequilibrated with buffer A. $100 \mu \mathrm{l}$ concentrated MDR3 from the affinity purification were applied to the column and eluted with buffer A at a flow rate of $0.2 \mathrm{ml} / \mathrm{min}$. The eluate was collected in fractions of 1 ml .

2.2.2.14 IMAC purification of BSEP and MDR3 with Ni^{2+} - NTA slurry

BSEP and MDR3 were purified from purified plasma membranes (see 2.2.2.8) that came from 1 L of cells. The membranes were diluted with purification buffer (50 mM Tris/HCl pH 8, $150 \mathrm{mM} \mathrm{NaCl}, 10$ \% (v/v) glycerol). After solubilization (see 2.2.2.10), the supernatant was mixed with $500 \mu \mathrm{l}$ of $50 \%(\mathrm{v} / \mathrm{v}) \mathrm{Ni}^{2+}-\mathrm{NTA}$ slurry (Qiagen) that was pre-equilibrated to the purification buffer. The slurry was then batch-loaded for 1 h at $4{ }^{\circ} \mathrm{C}$ under gentle agitation, and purification was performed at $4^{\circ} \mathrm{C}$ by gravity flow. All further steps involved 2 column volumes of the respective buffers: the gravity-packed column was washed twice (purification buffer +5 mM imidazole) and elution was in steps of $30,60,100,150,200$, and 300 mM imidazole.

2.2.2.15 Transfection of cell lines with wild type and BstBI-mutated BSEP-eYFP and fluorescence microscopy

pEYFP-N1-BSEP was made yeast-compatible as described for pPIC3.5 by addition of an Ori / Leu PCR product made from YEpHIS with primer pair OriLeu-pEYFP-AfIIIS1 / -S2. The Ori / Leu fragment can be removed completely and without trace by AfllI digestion (see above) which was not necessary. HepG2 cells were cultured in Dulbecco's modified Eagle's medium Nutrimix F12 (DMEM-F12; Invitrogen), HEK293 cells were cultured in DMEM and MDCK cells were cultured in MEM with Earle's Salts, each containing 10 \% fetal calf serum (PAA, Coelbe, Germany), in a humidified, $5 \% \mathrm{CO}_{2}$-atmosphere at $37{ }^{\circ} \mathrm{C}$. The indicated BSEP-YFP plasmid DNA was transfected using FuGENE HD (Roche) according to the manufacturer's guidelines. For fluorescence microscopy (LSM 510, Zeiss, Oberkochen, Germany) cells were fixed and permeabilized with methanol ($100 \%, 4{ }^{\circ} \mathrm{C}, 1 \mathrm{~min}$) and nuclei were stained with Höchst 34580 (Invitrogen). Cell culture and microscopy was kindly handled by Dr. Claudia Stross (Department of Gastroenterology, Hepatology and Infectiology, Heinrich Heine University Düsseldorf).

3 Results

In this thesis, overexpression of both human BSEP and MDR3 is established in two yeast species as a foundation for future in vitro studies. MRP2, that does not express in P. pastoris [199], is also found not to express in S. cerevisiae. Accordingly, the Results section is divided into two parts that adress two central aspects of the in vitro theme: the first part consists of the experiments that were necessary to obtain an overexpression of both proteins. The cloning of the corresponding, unstable coding sequences was a major hurdle that had to be solved first. The second part is dedicated to show how these in vitro systems can be connected to clinical in vivo data of disease-causing mutations in both transporters. For this, mutations need to be transferred quickly between the biochemical and clinical world, e. g. between recombinant expression (for functional studies) and mammalian cell culture systems (cell biology).

3.1 The BSEP and MDR3 cDNA Sequences are unstable in E. coli

Expression screening plays an important role in the first steps of recombinant membrane protein expression. Depending on the pursued strategy, an expression screen consists of several expression systems, their vectors, promoters, purification tags and tag positions. In essence, screening involves substantial recombinant DNA work to create the necessary expression constructs. Standard techniques of molecular biology, however, become limiting when working with gene sequences that are unstable in Escherichia coli. Several cirumstances can account for the fact that a certain sequence is toxic to or unstable in its bacterial host [219,220]. However, comprehensive approaches to create, maintain, and manipulate such a construct are limited, and studies on the actual cloning of such unstable or toxic genes for expression are rare [221]. Unfortunately, both the MDR3 and BSEP cDNA were shown to be unstable in several E. coli vectors [174,175,207,222].

Genes and DNA sequences in general can be unstable in their bacterial host for a variety of reasons, including: extensive secondary structure (e. g. z-DNA [223]), inverted or direct sequence repeats, encoding a gene product toxic to host metabolism, or carrying unintended prokaryotic signal sequences [174,224]. A close comparison of the MDR1 with the MDR3 and BSEP sequences revealed 79 and 49 \% DNA sequence identity, respectively (Figure 1), but no obvious reason for the
difference in toxicity, one exception being a cryptic prokaryotic promoter motif within the BSEP cDNA that has previously been suggested to destabilize it in E. coli [174]. However, silent mutagenesis of this motif as published did not abolish the instability of the BSEP coding sequence and was not easily accomplished. Also, reduction of the incubation temperature to $30^{\circ} \mathrm{C}$ as described [174] or even to room temperature had no positive effect on any cloning efforts for BSEP in E. coli.

In essence, the integration of BSEP or MDR3 containing DNA fragments into the expression cassette vectors or any other of many tested commercial or noncommercial plasmids failed, either as blunt-ended PCR products or as DNA fragments resulting from restriction digest. Topo-TA cloning trials were as unsuccessful as as the application of several low-copy plasmids for subcloning of the unstable DNA at more tolerable copy numbers.

Figure 1. Pairwise assembled sequence alignment of MDR1/MDR3 and MDR1/BSEP. The coding sequences of the human ABC transporters (MDR1, NM_000927.3; Mdr3, NM_000443.2; BSEP, NM_003742.2) were aligned with the Clone Manager Software V. 7 (Fast Scan, Maximum Quality, and default algorithm values). The assembled sequence alignment algorithm is used for pairwise comparison of sequences with some similar and some different regions such as ABC transporters (conserved NBDs, divergent TMDs). The significance threshold was set to 80 \% identity for display of only significant local homologies. MDR3 is clearly more related to MDR1 (79 \% DNA sequence identity) than BSEP (49 \%) as significant local sequence conservation is found (blue bars). Not surprisingly, the only significant local homologies to MDR1 are found in the BSEP NBDs (red boxes indicate the corresponding sequences).

In none of these attempts, plasmids containing the full transcripts were obtained, only rarely small fragments of BSEP or MDR3 were contained in the plasmids, with no obvious preference for a certain backbone, restriction site(s) or bacterial strain. The attempt to obtain the desired constructs by stepwise cloning of pieces of both cDNAs also failed, as did efforts to construct plasmids with a BSEP insert by ligationindependent cloning (LIC). Because of this instability, the cloning, expression, and mutagenesis of human BSEP and MDR3 remains a tedious and complicated task, and biochemical studies on these ABC transporters in recombinant expression continue to be severely limited: the only heterologous expression of BSEP and MDR3 so far was accomplished in insect cells [174,175,222].

3.2 A Set of Cassette Vectors for the Chomosomal Overexpression of both yeast and non-yeast genes in Saccharomyces cerevisiae

There are two basic strategies to overexpress a gene of interest (GOI) in S. cerevisiae: either from a chromosomal locus or from a plasmid. Both strategies have mutually exclusive advantages. The biggest advantage of chromosomal expression is the genetic stability: the expression cassette is stably propagated along with its host chromosome upon cell division, without the need of selection agents or chemically defined media allowing the selection of prototrophy markers in order to maintain a plasmid. With chromosomal expression, every cultured cell has the genetic information needed for expression of the recombinant gene. A plasmid on the other hand, is a highly flexible autonomous container of genetic information, that is easily manipulated. It can also be present in several copies per cell, thus increasing the gene copy number from one (chromosomal expression in a haploid S. cerevisiae strain) up to 60 , depending on the construct used $[225,226]$.

A System of Expression Cassette Vectors for S. cerevisiae

As the N-terminally 14 xhistidine (his $_{14}$)-tagged Pdr5 ABC transporter of S. cerevisiae could be overexpressed at high level from its native chromosomal locus [186], this setting was also attempted for the expression of BSEP, MDR3, and MRP2. For availability of several types and combinations of affinity tags for protein production and purification, the expression cassette plasmid pRE3 [205] was modified and expanded into a set of several plasmids (Figure 2) that allow to chromosomally tag any S. cerevisiae gene of interest (GOI) for homologous overexpression [191], and
also to introduce any foreign GOI into the genome of S. cerevisiae. After chromosomal integration, expression is driven from the strong constitutive PDR5 promoter in the cassette. In the set, several affinity tags are available: a his ${ }_{10}$ or his ${ }_{14}$ tag, a his ${ }_{10} /$ hemagglutinin (HA) tag combination, and a double HA tag. The considerable length of the his ${ }_{14}$ tag allows for a more stringent washing step during affinity purification, which minimizes co-purification of potential contaminants.

B

Figure 2. A system of expression cassette vectors for S. cerevisiae. Two variants are available: a set for the in situ tagging of any open reading frame (ORF) in the S. cerevisiae genome, and a set for the directed insertion of a non-S. cerevisiae gene of interest into the Sfil restriction site of the cassette on the plasmid (detail in B). in both cases, the expression cassette is prepared for site-specific recombination via PCR-primer-encoded terminal 40 bp overlaps. The tagging cassettes are then put upstream in frame to the S. cerevisiae gene of interest, while the expression cassette containing the non-S. cerevisiae GOI is recombined into the targeted locus. Successful integration results in histidine prototrophy of the transformants ($H / S 5^{+}$). In this study, a custom-designed strain with a modified PDR5 locus was used [186].

All affinity tags are designed to be flexible via insertion of a short linker: a stretch of three glycines prevents interference with protein folding by random steric obstruction and assures accessibility to their respective ligand during affinity purification. The sequence encoding these features was introduced by ligation of one synthetic double-stranded oligonucleotide per construct downstream of the PDR5 promoter into pRE2 [205]. For directional cloning of a GOI into the cassette, a Sfil restriction site was inserted downstream of the his $_{10}$ or his ${ }_{14}$ tag on the p10- or p14HisSfil plasmid. The directional cloning of a DNA fragment is possible because the Type IIs restriction endonuclease Sfil recognizes a non-palindromic sequence (5'GGCCNNNN \downarrow NGGCC-3', N for any nucleotide) [227]. To adapt the pRE2 plasmid to the Sfil cloning strategy, a Sfil restriction site in the backbone was removed by silent mutagenesis. While directional cloning with a single restriction site is a very convenient method, it has been reported that Sfil requires two recognition sites in cis, i. e. on the same plasmid for efficient digestion as two sites are bound and cut simultaneously by this enzyme [228]. To evaluate the efficiency of the Sfil cloning step with a single site in cis, a small insert of about 500 bp was cloned that contains the beta galactosidase gene along with its promoter (Figure 3A). As small fragments ligate much more efficiently due to cloning bias of size [229], nearly all properly Sfilcut plasmids are expected to receive an insert, and only religated or uncut plasmids will result in the formation of white colonies after transformation. To minimize background due to religation of the single-cut plasmids, their free ends were dephosphorylated. In essence, the amount of ligation mirrors the amount of digestion. The ligation efficiency was then determined by blue-white screening of the resulting transformant colonies (Figure 3A). The digestion of the p14HisSfil vector was found to be almost complete as judged from the screening plate that shows almost exclusively blue (insert present = was properly digested) and only few white bacterial colonies (undigested or religated). Next, the cloning efficiency of the large (4700 bp) MRP2 cDNA was tested. Ten clones resulting from tranformation of a 1 h ligation with equimolar amounts of vector and insert were picked and analyzed. Nine out of ten carried the correct plasmid as established by Xhol restriction digest, which only cuts once and within the MRP2 insert. This demonstrates the efficient insertion of DNA with compatible ends into the p14HisSfil vector (Figure 3B).

Figure 3. Proof of concept for the Sfil cloning strategy with the expression cassette vector p14HisSfil. A, left panel A fragment containing the lacZ gene and promoter from E. coli ("lacZ fragment") was directionally cloned into the Sfil restriction site on p14HisSfil. Right panel E. coli cells capable of blue/white screening (XL1blue) were transformed with a ligation reaction containing the dephosphorylated Sfil-cut vector with an equimolar amount of a lacZ fragment carrying compatible Sfil cohesive ends. Black circles denote examples of white colonies. B Sfil-based cloning of the MRP2 cDNA. This proof of concept shows that even without a second Sfil restriction site in cis (= on the same plasmid), the p14HisSfil vector can be efficiently digested by this type Ils enzyme. un, undigested; Xhol/Sfil, digested with the respective restriction enzyme.

The use of the Sfil site is based on the analysis of all human ABC transporter coding sequences (Figure 4A). The analysis shows that the vast majority (77 \%) of all cDNA variants do not contain any, and only few (23 \%) contain one or more Sfil recognition sites. From the 1024 ((4 bases) $)^{(5 \text { nucleotide positions) })}$ possible Sfil recognition sequences 64 ((4 bases) $)^{(3 \text { nucleotide positions })}$) different cohesive ends can originate that often would
be different from the one used on the p10- and p14HisSfil plasmids. Even a cleaved $A B C$ gene could then properly religate with itself and the vector backbone in the correct order. However, ligation efficiency also decreases with the number of participating fragments [229], and the MRP2 cDNA was one of the few transcripts to contain a (different) Sfil site that interfered with its efficient cloning. It was removed by silent mutagenesis (Figure 4B).
A
B

Figure 4. The Sfil cloning strategy. A Sfil restriction site frequency in the 87 transcriptional mRNA variants of the 49 human ABC genes. The majority of the predominant variants carries no Sfil site and can readily be inserted into the custom expression cassette plasmid as a Sfildigested PCR product. B The MRP2 cDNA is one of few human ABC protein transcripts containing a Sfil restriction site. It was removed via silent site-directed mutagenesis.

Integration of the MRP2 Expression Cassette into the Chromosomal PDR5

Locus of S. cerevisiae
After generation of the MRP2 cassette plasmid (p14HisSfil-MRP2, Figure 3B) and sequence verification of the complete expression cassette, the latter was amplified with overlap-containing primers that target the PDR5 locus on chromosome XV of S. cerevisiae (Figure 5). The yeast strain used for expression has two important characteristics: the pdr1-3 transcriptional gain of function mutation that turns the
strong, but highly regulated PDR5 promoter into a constitutive promoter, and the deletion of both this promoter and the PDR5 structural gene from the chromosomal locus by its replacement with a tryptophan prototrophy cassette [186]. Due to the latter deletion the strain was designated $\triangle \mathrm{PP}$. The removal of the PDR5 promoter is necessary to avoid interference with the PDR5 promoter on the cassette during homologous recombination.

Figure 5. Targeting of the chromosomal PDR5 locus of S. cerevisiae. The cassette vector ($\mathrm{p} 14 \mathrm{HisSfil}-\mathrm{MRP} 2$) serves as the template used for amplification of the expression cassette containing the gene of interest. Here, the target locus for integration can be chosen by design of the 40 base pair long homologies on the primers used to amplifiy the cassette. S. cerevisiae is then transformed with the expression casette and transformants are selected on minimal medium via the His5 ${ }^{+}$ prototrophy marker.

As shown in Figure 6, human MRP2 expression could not be detected in whole cell lysates of yeast transformants with two different antibodies. The polyclonal MRP2 antiserum MLE (used in Figure 6A) was raised against a synthetic oligopeptide comprising the N-terminal 26 amino acids of the protein [201]. To exclude possible interference by the fusion of the N-terminal his ${ }_{14}$ tag and linker sequence to this epitope with its immunodetection, the samples were reprobed with a second MRP2 antibody, the monoclonal mAb M_{2} III-6 (Figure 6B) [202]. Three control lysates from liver samples (kind gift of Dr. Verena Keitel) were included as a positive control for MRP2 and showed an immunoreactivity of approximately 180 kDa , which corresponds to the glycosylated form of MRP2 (Figure 6A and B, lanes 1 to 3).

Figure 6. Expression of human MRP2 is not detected in S. cerevisiae. Equal amounts of whole cell lysates from small-scale liquid yeast cultures of the indicated optical density (OD) were separated on an 8% SDS gel and electroblotted. A Western blot detection with the polyclonal antiMRP2 antiserum MLE [201]. B Stripped membrane from A reprobed with the monoclonal MRP2 antibody M_{2} III-6 [202]. *Cross-reactivity.

In a previous study on the close homologue MRP1, expression of the human transporter was detectable in S. cerevisiae throughout the exponential phase of growth [184]. Accordingly, a liquid yeast culture of a yeast clone with a fully sequence-verified recombinant $P D R 5 / M R P 2$ locus was used to sample MRP2 expression at corresponding culture densities (Figure 6A and B, lanes 7 to 9). Both antibodies show a marked signal at a molecular weight of about 150 kDa that might
be mistaken as MRP2-specific, since underglycosylation of MRP2 in S. cerevisiae could be anticipated from previous studies [182,184]. The high molecular weight of the native protein, in contrast, results from its substantial glycosylation [230]. However, the same quality and quantity of immunoreactivity was found in the empty parental $\triangle P P$ strain (lane 6), indicating lack of MRP2 expression. Since MRP-type ABC transporters are also found in S. cerevisiae, one or more of these membrane proteins could cross-react with both antibodies due to sequence conservation. This was confirmed by testing a whole cell extract from strain AD1-8U [192], which lacks the yeast ABC transporter genes YOR1, SNQ2, PDR5, PDR10, PDR11, YCF1, and PDR15 (as well as the transcription factor gene PDR3). Here, the signal found in the $\Delta \mathrm{PP}$ backgound from 150 kDa upwards was not detected (Figure 6A and B, compare lanes 5 and 6 to 9). In summary, the N-terminally his ${ }_{14}$-tagged human MRP2 could not be expressed in S. cerevisiae.

3.3 Expression in S. cerevisiae of the Human Bile Salt Export Pump and Multidrug Resistance Protein 3 by Use of Homologous Recombination

While the human MRP2 cDNA could readily be cloned into the expression cassette, this was not the case for the unstable coding sequenes of BSEP and MDR3. Their insertion into the designed expression cassette plasmids either by Sfil-based or any other means of bacterial cloning was ultimately unsuccessful. Instead, the expression cassette was constructed at the PDR5 locus by employing a "local assembly" strategy (Figure 7). Here, the two parts of the cassette that could not be spliced together by conventional cloning were combined in vivo by multiple homologous recombination (HR; Figure 7A): the HIS5 ${ }^{+}$prototrophy marker, PDR5 promoter, start codon and his $_{14}$ tag on one, and the coding sequence on the other segment. Both parts were generated by high fidelity PCR, adding 40 (termini) or 60 (overlap of both) bp of sequence overlap for HR. Only the combination of both fragments resulted in formation of transformant colonies on the Dropout-HIS agar plates, which select for the capability of the transformants to grow in the absence of histidine (Figure 7B).

Figure 7. The homologous recombination-based, "local assembly" strategy leads to recombinant S. cerevisiae expression strains for human BSEP. A Two fragments are generated via PCR, carrying overlaps (40 bp) to both up- and downstream chomosomal sequence targeting the chromosomal locus of choice (YFL, Your Favorite Locus). Both fragments are also made to overlap with each other (60 bp) to allow HR-mediated joining. B Actual experiment of A carried out for human BSEP. Competent S. cerevisiae cells were transformed with either one or both of the expression cassette fragments and plated onto DropoutHIS agar plates. Only the combination of both fragments (middle) leads to the formation of colonies of histidine-prototrophic transformants.

Importantly, the fragment carrying the histidine prototrophy marker could not integrate by itself (left side) due to the PDR5 promoter and gene deletion in the $\triangle \mathrm{PP}$ strain. This "local assembly" strategy, which entails a triple homologous crossing-
over event, allowed for the generation and analysis of S. cerevisiae strains that express human BSEP and human MDR3 (Figures 8 and 9). Both BSEP and MDR3 transformants were tested for the correct local assembly of the complete expression cassette by colony PCR: primer pairs were used that generate PCR products overlapping all de novo formed junctions (Figure 8A). All nine BSEP clones (the same as from Figure 7) and three arbitrarily picked MDR3 clones showed the correct product for each of the three junctions (front, junction, back) thus proving the correct cassette generation on the chromosome.

General primer binding locations to check correct local assembly

Figure 8. Genetic analysis confirms the successful "local assembly" of the BSEP and MDR3 expression cassettes. A Cartoon of the chromosomal recombinant PDR locus carrying the recombinant expression cassette. Primer pairs are colour-coded. The exact primer binding sites are not indicated as these vary for BSEP and MDR3. Instead, the general priming location relative to the three covalent recombinant junctions (indicated by the broken lines) is shown. Each primer pair product spans at least one of these junctions and is only generated (and then at the expected size) if correct recombination at these sites has taken place. B Using primer pairs corresponding to the colour-coding in A, all tested S. cerevisiae transformants yield PCR products of the exprected size and thus show the correct local assembly of the expression cassettes containing either the unstable $B S E P$ (left panel) or MDR3 cDNA (right panel).

Western blot analysis of these clones showed a signal at approximately 130 kDa for both BSEP and MDR3 (Figure 9), which is considerably smaller than the 160 kDa of the native proteins coming from human cell lines [176,177]. However, this is expected given the fact that the closely related MDR1 of the same polypeptide length as both was found to be only core-glycosylated in S. cerevisiae and thereby migrate at 130 kDa [182] while having a native apparent molecular weight of approximately 190 kDa in human cells [231]. A clear difference can be seen between the immunodetection of BSEP and MDR3: the polyclonal rabbit BSEP antiserum K24 [174] shows several signals at various apparent molecular weights that are unspecific cross-reactions, because they also occur in the control lane with whole cell lysate from the empty parental S. cerevisiae strain (Figure 9, left panel, compare clones 1 to 9 and empty control, also middle panel).

Figure 9. The "local assembly" strategy leads to the first heterologous expression of human BSEP and MDR3 in S. cerevisiae. Western blot analysis of S. cerevisiae whole cell lysates harvested in the early log-phase $\left(\mathrm{OD}_{600}\right.$ of 1) showed the constitutive expression of BSEP (with the polyclonal rabbit antiserum K24 [174]) and MDR3 (with the monoclonal antibody C219 [232]). Left panel All nine obtained BSEP clones were tested, and at least five of these express the human membrane protein (clone 2, 3, 6, 7, 9). Clones $3,6,7$, and 9 were reprobed for expression with light sensitive film material. Right panel Three arbitrarily picked clones of more than 50 obtained from transformation were tested for correct cassette assembly (B, right panel) and showed MDR3 expression.

In contrast, the monoclonal P-glycoprotein antibody C219 [232], which detects a stretch in the first NBD conserved in both MDR1 and MDR3, showed only a single band of the full-length protein (right panel).

Not all clones, however, seemed to express BSEP, and those which did, seemed to do so at varying levels (Figure 9, left panel, clones 2, 3, 6, 7, 9). This variation was probably the result of partial protein loss during sample preparation (for details on this and a subsequent modification of the corresponding protocol, see Materials and Methods 2.2.2.1). To clear this issue, the Western blot was repeated for the four expressing clones $3,6,7$, and 9 from fresh S. cerevisiae cultures (Figure 9, middle panel), and all four clones were now found to express BSEP at similar levels. Several confirmed expression clones were checked for the sequence integrity of the expression cassette. In all cases except one, the obtained sequence of the complete chromosomal expression cassette was found to completely replicate the in silico constructed sequence. The MDR3 clone 3 carried a missense mutation that resulted in an amino acid substitution from methionine to isoleucine at position 800. Unless stated otherwise, BSEP clone 9 and MDR3 clone 2 (carrying the wild type sequences) were used for all subsequent studies on the chromosomally expressed transporters.

Since the expression cassette could rapidly be generated by multiple homologous recombination in vivo, this "local assembly" strategy qualified as a suitable alternative to attempts of conventional cloning of the unstable BSEP and MDR3 cDNAs for expression. Judging from the Western blot signals, however, the expression levels were quite low and therefore insufficient for purification and biochemical studies. Several reasons for this were considered or excluded: I) The Nterminal his tag demanding fourteen consecutive histidines could, under conditions of high translational activity, lead to the local depletion of tRNAs carrying histidine so that the ribosome stalls and subsequently translation into protein is abrogated (a quantitative study of this phenomenon found in [233]). This seems unlikely as the same his tag configuration in the same cassette allowed a dramatic Pdr5 overexpression [186]. Accordingly, the tag has been designed using both available histidine codons (CAC and CAT) in alteration to balance codon usage. II) The Nterminal his tag position could lead to mistargetting of the protein. Therefore, Cterminally tagged versions of both BSEP and MDR3 would be of closer interest. Human MDR1 has been successfully overexpressed with a C-terminal his 8 tag to
purifyable amounts [182]. Importantly, this MDR1 fusion protein conferred a cellular multidrug resistance phenotype, indicating at least a partial localization to the S. cerevisiae plasma membrane for its proper function. III) The proteins are intrinsically unstable or mistargeted in the S. cerevisiae environment and thus rapidly turned over, leading to low levels of detected expression. As both MDR3 and BSEP are detectable at their full molecular weight, they are expected to reside in a membrane environment and thus to be folded properly. In essence, mistargetting due to an unfavourable his tag position or a general sequence incompatibility (e. g. codon usage [234]) remained as two possible reasons for the unsatisfactory expression levels of BSEP and MDR3. An obvious solution was the shift of the his tag to the Cterminus of the fusion protein. If this is unsuccessful, an increase in gene copy number may help to increase protein yield [200,235].

3.4 Expression of BSEP and MDR3 from Plasmid in S. cerevisiae

The impact of his tag position and copy number can be studied by the direct expression of both tag configurations from a multicopy plasmid: chromosomal (single copy) and plasmid-based (multicopy) expression of the very same tag configuration can then directly be compared. At the same time, expression of the two tag configurations from the same expression vector can be tested. For these reasons, BSEP and MDR3 expression vectors were constructed with both his tag configurations by direct homologous recombination in S. cerevisiae. Homologous recombination-based plasmid construction in S. cerevisiae has been welldocumented [236,237,238]. In general, S. cerevisiae can rely on sequence overlaps as short as 20 base pairs (bp) to generate a selectable circular plasmid from one, two, or several fragments after transformation. This is used to easily shuffle large fragments between constructs [237,238,239]. Next to the "local assembly" strategy, this method is another convenient way to circumvent cloning in E. coli. It allowed the rapid construction of a set of plasmids expressing N - and C-terminally his-tagged wild-type BSEP or the V444A allele of BSEP (Figure 10). The V444A allele has been described as both a natural allelic variant and a clinically relevant mutation that has been associated with drug-induced cholestasis and reduced BSEP protein levels [146,222,240,241]. V444A BSEP constitutes the first non-wild type BSEP variant expressed in S. cerevisiae. The YEpHIS expression vector was chosen because the

BSEP and MDR3 homologue MDR1 (human P-glycoprotein) could functionally be overexpressed from this construct in S. cerevisiae [182] as well as human MRP1 [184], a close relative of MRP2 from the same ABC transporter subfamily (ABCC). For clarity, it is referred to as YEpCHIS throughout this work.

B

Figure 10. Plasmid-based expression of two human BSEP variants in S. cerevisiae. A, left panel Homologous recombination was used to construct the unstable BSEP expression vectors in S. cerevisiae. Right panel The gapped plasmid backbone and BSEP PCR products carrying 40 bp terminal overlaps were co-transformed into competent S. cerevisiae cells. Only Co-transformation of both backbone and insert resulted in transformant colony formation. B Resulting transformants were picked and directly used to screen the expression of BSEP from small-scale, mid-log liquid cultures. Equal amounts of whole S. cerevisiae cell extracts were resolved on SDS gels, electroblotted and probed with the polyclonal BSEP antiserum K168 [203]. NHIS / CHIS, N - or C-terminal his tag position; empty Ctrl, strain transformed with the corresponding empty expression plasmid.

Since the original YEpHIS vector exclusively encodes a C-terminal his 8 tag, a version of this plasmid with a N -terminal his $_{14}$ tag followed by a $3 \times$ glycine linker and a factor X_{a} protease cleavage site was constructed and designated as YEpNHIS. The gapped plasmid backbone of both tag variants was then co-transformed into S. cerevisiae with a PCR product of the coding insert with terminal 40 bp overlaps (Figure 10A, left panel). Since under selection only the circular plasmid is propagated, only recombinants with the insert survive (Right panel). The transformants obtained were analyzed by Western blot from small-scale liquid cultures, and Figure 10B shows the expression of both wild-type and V444A variant BSEP from representative clones. All four recombinant BSEP variants were found to express roughly in similar amounts (lanes 2, 4, 6, and 8). More importantly, however, both tag positions did not differ in terms of expression levels. The only observable difference was that the C-terminally his $_{8}$-tagged fusion proteins (lanes 6 and 8) seemed to give a slight high molecular smear that was less pronounced in the lanes with the N-terminally tagged BSEP variants (lanes 2 and 4). From this comparison it could be concluded that the position of the polyhistidine affinity tag is not the limiting factor in the low BSEP expression levels.

Expression of N - and C-terminally His-tagged MDR3 from plasmid in S . cerevisiae

In analogy to BSEP, both MDR3 tag variants were constructed based on the YEpHIS and YEpNHIS construct. In order to facilitate a direct discrimination between the impact of the tag position and the impact of gene copy number (chomosomal versus plasmid-based expression), chromosomally expressed N -terminally his ${ }_{14}$-tagged MDR3 was included on the Western blot (Figure 11). For a proper comparison, the corresponding S. cerevisiae strain was grown in the same synthetic complete medium as the plasmid-based expression strains, with the difference that an appropriate amount of leucine was included that was left out in the other media for plasmid selection.

As seen for MDR3 expressed from the YEp plasmids (Figure 11), the tag position seems to be a vital determinant of its expression levels in S. cerevisiae as the N-terminal tag variant (lane 3) expressed much less than the chromosomal version of the same tag configuration and length (lane 2). The C-terminal tag variant
on the other hand (lanes 4 and 5 show two arbitrarily picked clones) expressed to levels comparable with MDR1 (lane 6). The direct comparison of expression levels between the chromosomal, single copy N -His and the plasmid-based, multicopy C His version of human MDR3 showed a roughly two- to threefold difference of expression in favor of the latter.

Figure 11. Plasmid-based expression of human MDR3 in Saccharomyces cerevisiae. As in Figure 10, MDR3 expresion vectors were constructed by homologous recombination from the YEpHIS and YEpNHIS plasmids. Equal amounts of whole S. cerevisiae cell extracts from mid-log growth phase liquid culture were resolved on SDS-PAGE, electroblotted and probed with the monoclonal C219 P-gp antibody that detects both MDR1 and MDR3 P-glycoproteins. Chr., chromosomal expressio; NHis / CHis, N - or C-terminal his tag position; empty Ctrl, strain transformed with empty YEpHIS expression plasmid.

In summary, the shift from chromosomal to plasmid-based expression showed that the low BSEP expression was not alleviated by a change of the his tag position. For MDR3, the tag position has a pronounced influence on protein levels. In comparison to the chromosomal, N -terminal his $_{14}$ tag fusion protein, the same tag configuration from plasmid resulted in a drastic decrease of detectable MDR3, while the Cterminally his ${ }_{8}$-tagged MDR3 expressed about two- to threefold better.

In light of these findings a direct comparison between both MDR3 and BSEP expression levels became interesting: how great is the difference in expression between the both in S. cerevisiae or, more specifically, is the MDR3 P-glycoprotein expressed much better, perhaps as it is more closely related to the well-expressing MDR1 than BSEP? The C219 antibody does not recognize human BSEP in S. cerevisiae (own observation). Instead, the protein levels of recombinant human BSEP and MDR1 in S. cerevisiae with the same his tag position and length that were expressed from the same construct (YEpHIS) were analyzed with a his tag antibody (Figure 12). BSEP (lane 3) was found to express at a much lower level than MDR1 (lane 2). Since MDR1 and MDR3 are expressed at roughly the same amount (see Figure 11), this means that the BSEP expression is also much lower than that of MDR3. This direct comparison of MDR1 and BSEP yields showed the clear need for further optimization of BSEP expression conditions in S. cerevisiae.

Figure 12. Direct comparison of MDR1 and BSEP expression in S. cerevisiae. Human BSEP is much less expressed in S. cerevisiae than human MDR1. Equal amounts of whole S. cerevisiae cell extracts from mid-log, small-scale liquid culture expressing C-terminally his ${ }_{8}$-tagged MDR1 or BSEP were probed with a monoclonal anti his tag antibody. As in Figure 7, all shown lanes come from the same blot membrane and detection. Irrelevant lanes have been omitted for the sake of clarity.

3.5 A Recombination-Based Expression Plasmid Screen for BSEP

Since recombinant BSEP expression in S. cerevisiae was, irrespective of the affinity tag position, shown to be inadequate for further biochemical or structural studies, other ways of increasing protein yield were explored. To test the impact of different promoters, an expression screen was developed that addressed the following requirements:
I) A set of different (strong, weak, inducible, repressible) promoters was to be tested against both available terminal affinity tag positions. For subsequent cost-effective purification, a short, his ${ }_{6}$ tag was chosen that could easily be encoded on either of the overlap-containing primers.
II) It must, as all previous successful efforts to clone BSEP, be as independent of E. coli usage as possible in order to circumvent the problems encountered when working with the unstable BSEP coding sequence.

Recovery of the Unstable BSEP and MDR3 Plasmids from S. cerevisiae

Plasmids generated in S. cerevisiae, as was done for BSEP and MDR3, can be recovered from yeast cells [212]. For lysis to occur, the rugged outer cell wall is either disrupted by mechanical force (vortexing with glass beads) or by treatment with a cell wall-digesting enzyme mix such as zymolyase or lyticase. Then the S. cerevisiae cells are subjected to a standard alkaline lysis procedure just as E. coli [212], yielding plasmid of sufficient quantity and purity. As plasmid copy number in S. cerevisiae is generally much lower than in E. coli [225,226], larger culture volumes are required to partially compensate for this difference [212]. From a 1 L overnight yeast culture, several micrograms of plasmid can be purified. For comparison, a 100 ml overnight bacterial culture can easily yield 100 micrograms of a multicopy plasmid.

The BSEP- and MDR3-containing YEp vectors were recovered from S. cerevisiae and used to transform several E. coli strains (DH5alpha, DH10b, XL1blue, XL10Gold, S.U.R.E., S.U.R.E.2). It was found that all tested bacterial strains could maintain the intact vectors stably as long as the incubation temperature was strictly kept at the permissive temperature of $30^{\circ} \mathrm{C}$ [174]. At $37{ }^{\circ} \mathrm{C}$ none of the constructs could be stably propagated. As in previous attempts to construct BSEP and MDR3 plasmids in E. coli, the lowered temperature was kept at every step following the heat shock used for transformation, including the regeneration phase in antibiotic-free
medium. Figure 13 shows the plasmid recovery of the YEpHIS constructs with the MDR1, BSEP (V444A), and MDR3 insert, respectively, in XL1blue E. coli cells. The YEpHIS vector is maintained by ampicilline selection in bacteria. The much slower hydrolyzing beta-lactam carbenicilline was used to ensure a tighter selection pressure on the bacteria for better maintenance of the intact plasmid during the prolonged time of incubation. Additionally, the transformed bacteria were strictly cultured under low salt conditions. The integrity of the constructs could in all cases be verified by DNA sequencing. Only rarely (about one in ten), clones were picked that carried single random point mutations.

Figure 13. Intact toxic BSEP and MDR3 plasmids can be recovered from S. cerevisiae and propagated in E. coli under suitable conditions. A Analytical agarose gel of the plasmid preparation coming directly from S. cerevisisae. B E. coli XL1blue cells were transformed by heat shock with the preparations from A and grown at $30{ }^{\circ} \mathrm{C}$ on low salt LB agar plates containing carbenicillin, and pictures were taken after incubation for 48 h . BSEP- and MDR3-containing plasmids result in slower bacterial growth than MDR1. Black bars $=0.3 \mathrm{~mm}$.

At this point, it should be noted that, although some groups have ultimately succeeded in creating full-length human BSEP, their generation in E. coli has never been a straightforward, let alone quick procedure due to the reported instability of the $B S E P$ cDNA [174,207]. It could be observed that the bacterial colonies resulting from BSEP and MDR3 plasmid transformations are slow-growing in comparison to the closely related, stable and non-toxic MDR1-containing YEpHIS plasmid, indicating that E. coli is impaired by the presence of BSEP and MDR3 coding sequences (Figure 13B).

Screening of BSEP Expression in S. cerevisiae: a Two-Step Strategy for the Generation of Unstable Plasmids

Combining in vivo homologous recombination to first generate and plasmid recovery to then amplify the intact toxic BSEP contructs in E. coli at $30^{\circ} \mathrm{C}$, a rapid BSEP expression screen was established. A subset of multicopy vectors with inducible (GAL1), repressible (MET25), and constitutive promoters of varying strength (GPD, TEF, CYC), was taken from two S. cerevisiae expression vector sets available in the public domain (ATCC nos. 87669 [208] and 87670 [209], respectively). As all the vectors share a common backbone, the same terminal insert overlaps added by PCR can be used for recombination into all of these.

While the generation of the BSEP inserts for recombination via PCR was straightforward, optimizing the product yield was not as uncomplicated. The following circumstances had to be taken into account to ensure a fool-proof routine for the screen: first, the transformation of S. cerevisiae has to be chemical because this requires less hands-on time and is much less error-prone (in terms of handling) than S. cerevisiae spheroplast electroporation. For an efficient chemical transformation of S. cerevisiae cells for homologous recombination, more DNA is needed than for bacterial transformation, i. e. in the range some hundred nanograms [238]. These are contained in a few pooled PCR reactions that have to be gel-purified in order to remove secondary products that otherwise could compete with the desired insert during HR. The purification results in a reduced yield of product. This is either compensated by pooling and purifying more reactions or by optimization of PCR conditions. The design of the primers for HR in general is, however, often rather fixed: start and end of the coding sequence to be inserted have to serve as priming
sites, and the 5^{\prime}-overhangs consist of the overlaps necessary for targeted recomination, usually around 40 bp . If either of the primers is to encode additional information like a his tag or a protease cleavage site then the oligonucleotide overhangs that do not prime become too long and may interfere with the PCR by unproductive binding to stretches of random complementarity. The main feature of variability about such primers is the length of the priming stretch which is adjusted to avoid unfavourable properties such as primer dimerization. This however can only be done within a certain range as the primers should not be too long. What can be optimized instead is the reaction itself by additives like DMSO, which promotes template DNA denaturing, or increasing the amount of free Mg^{2+}, which is needed for polymerase activity. The primers for BSEP amplification both carried 40 bp of homology stretches to the ends of the gapped target plasmid, and, in each of the two used primer pairs, one encoded the his_{6} tag. The features of the primers allowed for a limited optimization of PCR product yield (Figure 14). In the depicted example, DMSO was the central component in optimizing PCR product yield.

Figure 14. Overlap-carrying primers limit the yield of PCR product for HR. Optimization of PCR conditions can not always compensate for limitations in primer performance that are dictated by the necessary 5^{\prime} overlaps and custom features such as encoded tags. Shown here is a sparse optimization strategy to increase BSEP product (indicated by the arrow) yield under such conditions by addition of dimethyl sulfoxide and / or magnesium. Several such PCR reactions have to be pooled (eight in the case of BSEP) for an efficient co-transformation of S. cerevisiae.

This essentially means that more reactions have to be pooled to obtain enough product after gel purification, and for this reason the construction of the whole set of screening plasmids was divided into two phases (Figure 15):
I) Initially, the two his tag configurations of the p426-MET25-BSEP vector were created by in vivo recombination in S. cerevisiae (Figure 15, Box I).
II) After plasmid recovery, amplification in E. coli and sequence verification, preparative amounts of these were then used for restriction digest to obtain the inserts for immediate recombination into the remaining screening set vectors (Figure 15, Box II).

Figure 15. A simple, two-step screening strategy is used to construct and test BSEP expression from a set of different expression vectors. The construction of the vector set is carried out in two steps: I. Overlapgenerating primers are used to generate two wild type BSEP PCR products covering both terminal his tag positions. The first screening plasmid is then gapped und used to construct both BSEP variants by homologous recombination in S. cerevisiae (black box). II. Plasmids are harvested either from S. cerevisiae or E. coli culture. BSEP cDNA with terminal sequence overlaps is then obtained by preparative restriction digest (RSI $=$ Smal, RSII $=$ Fspl for the vector set used) and recombined into the remaining gapped vectors of the screening set (grey box).

The resulting S. cerevisiae clones in each step were directly used to screen expression. All obtained clones were found to uniformly express BSEP; examples from both phases of the screen are given in Figure 16.

Figure 16. Homogeneity of expression among transformants in the plasmidbased screen. Representative examples of Western blots from both steps of the screen show that every transformant clone obtained expresses BSEP. A Performance of the N -terminally his $_{6}$-tagged BSEP construct made in step I of the expression screen. B Performance of the TEF promoter / N-terminal his $_{6}$ tag from step II of the screen. Pos. Ctrl, YEpCHIS-BSEP as expression reference.

The results of the screen have been compiled in Figure 17: the strong constitutive GPD and TEF promoter constructs showed the strongest BSEP expression (lanes 1 to 4), while the weak CYC promoter did not lead to detectable BSEP levels (lanes 5 and 6). From the regulatable promoters, both MET25-driven variants expressed at quite low levels, while under induction only the N -terminally his $_{6}$-tagged GAL1-BSEP
construct shows expression (lanes 7, 8, 9, and 10). In all cases, the BSEP sequence on these constructs was verified by sequencing, including the correct upstream junction and promoter. In summary, by following this two-step strategy a set of vectors could be used to rapidly screen the influence of promoter strength and his tag position on expression from the unstable BSEP cDNA. However, no combination of these led to a notable increase in BSEP expression.

Figure 17. BSEP expression from a set of different expression vectors constructed with the two-step, HR screening strategy. A The construction of the vector set is carried out in two steps: I. Overlapgenerating primers are used to generate two wild type BSEP PCR products covering both terminal his tag positions. The first screening plasmid is then gapped und used to construct both BSEP variants by homologous recombination in S. cerevisiae (black box). II. Plasmids are harvested either from S. cerevisiae or E. coli culture. BSEP cDNA with terminal sequence overlaps is obtained by preparative restriction digest (RSI = Smal, RSII = Fspl for the vector set used) and recombined into the remaining gapped vectors of the screening set (grey box). B The expression screen showed a correlation of promoter strength and BSEP expression. Mid-log BSEP expression was assessed by probing Western blots of whole S. cerevisiae cell extracts with K168 [203].

3.6 The Use of the Compatible Solute Glycerol as a Chemical Chaperone to Increase BSEP Expression in S. cerevisiae

Since the plasmid-based expression screen (Results 3.5) did not result in an increase of BSEP expression, an alternative approach was tested. If modifications on the genetic level fail, the expression conditions themselves can be adjusted. Two previous studies on the functional expression of human ABC transporters reported the successful use of glycerol as a small molecular chaperone to increase the amount of expressed MDR1 and MRP1 [182,184]. Glycerol is a non-toxic compound that mixes well with water, and, more importantly, is not metabolized in S. cerevisiae while glucose is present. It has already been used as a chaperone in eukaryotic cell culture [242]. Glycerol is thought to stabilize and facilitate the proper folding of nascent polypeptide chains, thus increasing the amount of active and non-degraded protein in the cell [242,243].

For MDR1, Figler and colleagues found an addition of $10 \%(v / v)$ glycerol to be optimal in stabilizing the recombinant membrane protein [182]. This concentration was also tested for the MDR1 homologues BSEP and MDR3, and the expression of both membrane proteins was indeed sustained by use of this chemical chaperone. Two observations can be derived from the Western blots depicted in Figure 18: for both variants of plasmid-expressed BSEP (wild type and V444A) and chromosomally expressed MDR3, the de facto expression was detectably increased, and the time of expression during exponential growth phase was significantly prolonged. This may help to partially compensate low yield with cell mass: more protein is obtained from more cells. Through the use of the chemical chaperone glycerol, the same culture volumes can now be grown to higher densities instead of having to scale up for compensation.

Figure 18. The chemical chaperone glycerol increases and extends the expression of both BSEP and MDR3. A Equal amounts of whole cell lysates from 1 L liquid cultures with or without 10% (v/v) glycerol sampled at the indicated optical density were probed for BSEP expression with a monoclonal anti-his tag antibody. B Experiment as described in A for chromosomally expressed, N-terminally his ${ }_{14}$-tagged MDR3. MDR3 appears on this blot as a double band, which is the result of using a 10% SDS separating gel instead of 7%. The signal's weakness in comparison with the other MDR3 Western blots is due to the use of the ECL+ detection solution instead of the more sensitive ECL Advanced reagent.

Since it was shown for MDR3 and BSEP as well as for MDR1 [182] that these proteins are most prominently expressed during exponential growth phase, the expression behaviour at the very onset of the exponential growth phase, after one cell division cycle, was investigated (Figure 19). At this point, cells expressing N terminally his-tagged MDR3 from the chromosomal PDR5 locus showed an increase in expression by glycerol (see Figure 18B, $\mathrm{OD}_{600} 0.6$ sample with glycerol).

Figure 19. The chemical chaperone glycerol has no influence on the expression of the MDR3 plasmid constructs at the onset of the exponential growth phase. Whole cell lysates from cells harvested at $\mathrm{OD}_{600} 0.5$ were probed for protein expression with the C219 P-gp antibody that recognizes both MDR1 and MDR3. Cultures were inoculated at an OD_{600} of 0.2 . The Western blot shows that, after one cell division, glycerol had no effect on the expression. MDR1 and MDR3 expressed equally well and were not affected by glycerol. The low expression of the N -terminally his-tagged MDR3 expressed from YEpNHIS is not rescued, suggesting that this tag position does not result in an unstably folded fusion protein in S. cerevisiae.

The Western blot showed that, after one cell division, glycerol had no effect on MDR3 expression from any of the constructs, suggesting that the expression was at its maximum. Importantly, at this growth stage MDR1 and MDR3 expressed equally well and were not affected by the addition of glycerol. The low expression of the N terminally his $_{14}$-tagged MDR3 expressed from YEpHIS was not rescued by the chemical chaperone.

3.7 Subcellular Localization of Human BSEP and MDR3 in S. cerevisiae

BSEP and MDR3 were then investigated with respect to their subcellular localization to see whether impaired trafficking could account for the low BSEP expression. For this, membranes were harvested from whole yeast cells in the early phase of logarithmic growth, and subjected to density fractionation through a multistep sucrose gradient [244]. Figure 20 shows the localization of the membrane proteins in the fractionated membranes. All tag variants of BSEP and MDR3 co-localized at least partially with Pdr5, which was exclusively found in the plasma membrane (PM) fractions (Figure 20, green box).

Figure 20. Subcellular localization of BSEP, MDR1 and MDR3 in early logphase S. cerevisiae. Membane vesicles prepared from whole S. cerevisiae cells were separated by ultracentrifugation through a multistep sucrose gradient. Dpml is a membrane-resident yeast enzyme marker for the endoplasmic reticulum (ER), while the Pdr5 transporter is a yeast plasma membrane marker. Both BSEP and MDR3 at least partially localized to the plasma membrane (PM). MDR3 and MDR1 shared a localization pattern throughout the sucrose gradient, while BSEP seems to consist of two populations, one residing in the ER, and the other localized to the PM.

One striking difference was observed between the low-expressing BSEP and the better expressing MDR3 and MDR1: the latter were found throughout all fractions from the endoplasmic reticulum (ER) to the PM, while both N - and C-terminal his tag variants of BSEP were found separated into two species: one resided in the ER (red box) while the other was targeted to the yeast plasma membrane. Whether the low level of BSEP protein is due to partial degradation in the ER is unclear. The high MDR1 and 3 expression levels, on the other hand, may result in these proteins being stuck in all stages of the secretory pathway, and it is uncertain whether a lower expression would result in an exclusive PM-localization or the bipartite pattern observed for BSEP.

3.8 Testing for a Cellular Resistance Phenotype of BSEP and MDR3 in S. cerevisiae

The expression of drug efflux pumps of both fungal and mammalian origin was frequently found to be functional in S. cerevisiae and often conferred cellular drug resistance [181,193,245,246,247,248,249,250]. As an example, the homologous over-expression of Pdr5 results in hyperresistance against the broad substrate spectrum of this PDR transporter such as azoles and cycloheximide [251,252]. Heterologous expression of human MDR1 also conferred a multidrug resistance phenotype against a broad spectrum of cytotoxic compounds that was easily detected in a $\Delta p d r 5$ strain background (Figure 21) [181,253]. In contrast, MDR3, which is a close MDR1 homologue in terms of sequence conservation but not function, is a phosphatidylcholine floppase and not a multidrug efflux pump like MDR1. As expected, its expression in S. cerevisiae cells did not confer resistance against any of the tested drugs (Figure 21).

MDR3-associated Phenotype

Next, FK506 was tested as a compound that is an important MDR1 substrate in the context of transplantation medicine [254,255]. Also known as tacrolimus, FK506 is a potent immunosuppressant that additionally functions as an antifungal compound and in yeast has a cytotoxic effect [256]. In the blood-brain barrier, MDR1 mediates FK506 efflux back into blood plasma and protects the central nervous system from neurotoxic effects [257]. The compound is lipophilic, and its clearance from the body is highly dependent on liver function [258]. A drug resistance assay against FK506
was carried out to test whether MDR3, that is almost exclusively expressed in the apical membrane of liver parenchymal cells, also plays an active role in FK506 excretion. Indeed, MDR3 has been found to transport a small subset of the MDR1 spectrum, the relevance of which in biliary drug clearance, however, is likely to be low [175]. As FK506 was not among the tested substrates in that study, the compound was tested here. As seen in Figure 22, only MDR1 but not MDR3 expression conferred FK506 resistance to S. cerevisiae cells. A marginal resistance could be found and reproduced for a chromosomal MDR3 clone that carried an M8001 missense mutation located in the cytoplasmic loop between TM helix 7 and 8 in the second TMD (Figure 22, Chr. N -his ${ }_{14}-\mathrm{MDR} 3$ Clone 3). For the wild type MDR3 (clones 1 and 2), however, no resistance against FK506 was observed.

Figure 21. MDR1, but not MDR3 confers a cellular multidrug resistance phenotype in S. cerevisiae. Expression of the human P-glycoprotein (MDR1) protected the yeast cells against fluconazole, ketoconazole, cycloheximide, and doxorubicin. Human MDR3 failed to protect the cells against these compounds. Parental strain: $\triangle \mathrm{PP}$ strain, that is devoid of Pdr5 expression.

A

B

Figure 22. MDR1 confers resistance against FK506 in S. cerevisiae. One of the MDR3 clones (3) also mediates a marginal yet reproducible resistance. This clone carries a M8001 missense mutation. Parental strain, $\triangle P P$ strain that is devoid of Pdr5 expression.

BSEP-associated Phenotype

Under aerobic conditions, exogenous sterol compounds are not taken up by S. cerevisiae cells, a phenomenon which is termed aerobic sterol exclusion [259]. However, the conjugated bile salts taurocholate (TC) and taurodeoxycholate (TDC) are major constituents of the bile salt pool that are sterol derivatives and have a strong detergent capacity owing to their more hydrophilic nature after conjugation. Unless neutralized in the bile as part of mixed micelles containing both cholesterol and phosphatidylcholine, they inflict substantial cellular damage in the liver by partitioning into and subsequently destroying the canalicular membrane by its lysis. In some PFIC3 patients, the canalicular systems are damaged so much that they can not be identified morphologically anymore [171]. The difference between TC and TDC is a single hydroxyl group at carbon position 7 in the B ring of the sterane core structure (Figure 23). Along with the taurine-conjugated form of chenodeoxycholic acid, they are the major species of bile salts found in human bile. The conjugation also permits a high canalicular (in the mixed micelles) and intestinal concentration without passive reabsorption that would occur with the more hydrophobic unconjugated forms. As both TC and TDC are BSEP substrates [174,207] and strong detergents, they were tested for their potential as cytotoxic compounds that impair yeast cell growth by compromising membrane integrity, and it was tested whether the expression of human BSEP conferred cellular resistance against them (Figure 24).

A

TC

B

TDC

Figure 23. Chemical structures of taurocholate (TC) and taurodeoxycholate (TDC). Both are dominant forms of conjugated bile acids in the bile salt pool.

Figure 24. Resistance test of S. cerevisiae strains expressing BSEP against tauro- and taurodeoxycholate. A The bile salt taurocholate is growthinhibiting starting from 1 mM . Surprisingly, its inhibitory effect diminishes with increasing concentration. B No effect on growth is seen over a range of taurodeoxycholate concentrations. The range of the respective bile salts' critical micellar concentration (cmc) is indicated. Serial dilutions of mid-log growth phase cells were spotted onto YPD plates with the indicated bile salt concentrations.

It was found that TC, but not TDC had a strong growth-inhibiting effect on S. cerevisiae cells. The effect was found in concentrations below and within the range of the critical micellar concentration (cmc) of TC (the cmc range is indicated for both TC
and TDC in Figure 24). Interestingly, S. cerevisiae cells returned to their full growth potential at concentrations above the cmc for TC. The cmc value of a detergent can be influenced by other additives in an aqueous system [260], which might explain the offset encountered between growth inhibition and theoretical cmc range. In addition, the broad cmc range of bile salts is not easily estimated as a mixture of different aggregates exists throughout this range and even well above the given cmc concentration [261]. The expression of BSEP in the four clones 3, 6, 7, and 9 (see Results 3.3) did not result in a resistance against TC. The slightly better growth of clone 3 at 1 mM TC (in Figure 24A) was not reproducible, when the relevant concentrations of taurocholate were used to test all available BSEP expessing S. cerevisiae clones (Figures 25 and 26, upper panels). The lack of resistance could again be reproduced for all nine clones (see Results 2.2) that contain the expression cassette for N -terminally his $_{14}$-tagged BSEP (Figure 25). Also, the expression of the wild type or the V444A allele of BSEP with either the N - or the C-terminal tag from plasmid did not lead to TC resistance (Figure 26, upper panels).

Figure 25. Taurocholate resistance test of S. cerevisiae strains expressing BSEP from the chromosomal PDR5 locus. This experiment fully reproduces the results from Figure 24 as none of the nine clones that express Nhis ${ }_{14}$-BSEP show resistance against TC.

Since MDR3 was shown to translocate phosphatidylcholine from the inner to the outer leaflet of the membrane [83], and this protects the canalicular membranes from bile salt-mediated damage, it was tested whether the expression of MDR3 conferred such a "secondary" resistance to the yeast plasma membrane by overloading it with phosphatidylcholine. However, the three yeast strains chromosomally expressing MDR3 were found to be as susceptible to TC as the control strain (Figure 26, lower panels). In all TC resistance experiments the onset and ceasing of the bile saltsmediated growth impairment was observed with increase in concentration, strongly suggesting that this effect is an inherent characteristic of this compound, and most likely cmc-related.

Figure 26. Taurocholate resistance test of S. cerevisiae strains expressing either BSEP from plasmid or MDR3 from the PDR5 locus. Neither BSEP nor MDR3 mediate cellular TC resistance.

Analysis of Statins as S. cerevisiae Growth Inhibitors and BSEP Substrates

Statins are inhibitors of the 3-hydroxy-3-methylglutaryl (HMG) -CoA reductase, a key enzyme in the cholesterol biosynthesis pathway, by mimicking its subtrate, HMGCoA [262]. Lovastatin (Figure 27) has been shown to also inhibit yeast HMGCoA reductase and thus growth of yeast cells. Another statin, pravastatin, has been reported to be a transported substrate of BSEP [263]. However, it is unclear whether
this compound can inhibit the S. cerevisiae HMG-CoA reductase and thus function in the selection of yeast cells expressing functional BSEP.

A

Figure 27. Chemical structures of statins. A Lovastatin is an inhibitor of the HMGCoA reductase of S. cerevisiae [213]. B Pravastatin is a BSEP substrate [263].

Both statins were tested as compounds selecting for active BSEP expression. Lovastatin, as an inhibitor of the yeast HMG-CoA reductase [213], was found to inhibit growth of all tested yeast strains irrespective of BSEP or MDR3 expression (Figure 28). As statins are drugs that may be cleared by efflux pumps such as MDR1, yeast cells expressing this transporter were included as a control. MDR1 in S. cerevisiae, however, did not transport Lovastatin (Figure 28), although this statin was found to interact with MDR1 in mammalian cell culture [264]. In the same study, pravastatin did not interact with MDR1, yet neither of these statins was tested for being an actual MDR1 transport substrate. MDR3 expression did not provide protection against the toxic effect of lovastatin (Figure 28). Since MRP2 is another apical efflux pump that could mediate statin efflux in hepatocytes, and which could not be expressed from the chromosomal PDR5 locus with a N-terminal his ${ }_{14}$ tag (see Results 3.2), an MRP2 expression plasmid with a C-terminal his tag was constructed by homologous recombination in S. cerevisiae. The sequence-verified construct showed no MRP2 expression, and no lovastatin resistance of S. cerevisiae cells carrying this plasmid could be detected (Figure 28).

Figure 28. Lovastatin inhibits cellular growth but is not a BSEP substrate in S. cerevisiae. A MDR1 and MDR3 did not protect the cells from lovastatin. In addition, yeast cells carrying the YEp expression plasmid for carboxyterminally his 8_{8}-tagged MRP2 showed no resistance. B In Western blot analysis, no MRP2 expression from this plasmid was detected with a monoclonal his tag antibody. Ctrl, drug-free control medium (solvent only).

The other tested statin, pravastatin, showed no growth-inhibiting effect on any of the tested S. cerevisiae cells in a broad range of concentrations (Figure 29). In summary, no information about BSEP-, MDR3-, and MDR1-conferred resistance toward this substance in yeast cells could be gained.

	Pravastatin $[\mu \mathrm{M}]$																					
	Ctrl			10			20			40			Ctrl			100			300			
	-			-			-			O			-	-	2	-	-	*	O	-	4	empty YEpHis plasmid
	0	-		-	\bigcirc	-	-	-	-	-	-		To	-	$\%$	\bigcirc	-	\bigcirc	-	\bigcirc	\sim	YEpNHisBSEP
	\bigcirc	Q		-	\bullet	\%	-	-	4	-		*	-	-	*	.	-	c.	-	0	a	YEpNHisBSEP V444A
	-	-	*	-	-	*	-	¢	4	-	-	2	\bigcirc	\bigcirc	8	-	-	\%	-	-	*	YEpCHisBSEP
	-	-	*	-	\bullet	-	-	\bullet	-	-			$\dot{0}$. +	-		\bullet	-	-	-	YEpCHisBSEP V444A
													-			${ }^{\circ}$	\bigcirc	\bigcirc	0	-	0	YEpCHisMRP2
$0 \mathrm{D}_{600}$	0.2	0.02	0.002										-	\bigcirc	\bigcirc		-	*	-	-	0	YEpMDR1His
													,	-	Q	-	-	*	\bullet	\bullet	-	Chr. MDR3
													-	-	4	-	0	*	-	-	-	YEpCHisMDR3

Figure 29. Pravastatin does not inhibit S. cerevisiae cell growth. Therefore, it could be used as a compound to confirm functional BSEP expression. Ctrl, drug-free control medium (solvent only).

3.9 Initial Purification of Human BSEP and MDR3 from S. cerevisiae

Nonetheless, a first analytical affinity purification of both human transporters was possible. An initial solubilization screen of membranes prepared from whole yeast cells pointed towards the stronger, ionic Fos-choline detergents and here, the best results for both MDR3 and BSEP were obtained with Fos-choline 16 that has the longer aliphatic chain (Figure 30). Using this detergent, the C-terminal his tag fusion proteins were taken for purification, since MDR3 gave the highest yield in this tag configuration. In this way, a direct comparison of the purification efficiency for both membrane proteins could be made.

Figure 30. Initial solubilization screen for MDR3 and BSEP. A small selection of "popular" detergents in membrane protein biochemistry were screened for their capability to efficiently solubilize the human ABC transporters at a final concentration of $1 \%(\mathrm{w} / \mathrm{v})$ at $4{ }^{\circ} \mathrm{C}$ for 1 h . Fos-choline (FOS) 14 and 16 are stronger detergents in comparison to decyl-, dodecylmaltoside and CYMAL-5 as they are ionic detergents. Only the stronger detergents could efficiently solubilize C-his ${ }_{8}$-BSEP (detected with K168) and C-his ${ }_{8}-M D R 3$ (C219). For both membrane proteins, FOS16 gave the best results (indicated by grey box). SN, supernatant; P, pellet.

Although the amounts obtained were insufficient for any further studies, the his tags on both membrane proteins were clearly accessible to the IMAC column material and thus were not occluded by a detergent micelle or the protein itself (Figure 31).

Figure 31. Affinity purification of C-terminally his ${ }_{8}$-tagged human BSEP and MDR3. Both BSEP (A) and MDR3 (B) were solubilized with Fos-choline 16 from preparations of whole yeast cellular membranes, the column material (Ni^{2+}-NTA agarose) was batch-incubated with the solubilized material. Packing, washing and elution steps were performed by gravity flow. Equal volumes of the indicated steps and fractions were separated on SDS gels, electroblotted, and detected with K168 (A) and C219 (B). Arrows indicate the full-length proteins, and brackets indicate degradation products. M, marker lane on MDR3 Western blot.

BSEP, once solubilized from its membrane, seemed to become the subject of substantial degradation (Figure 31A), although a cocktail of protease inhibitors was used. A major product of this degradation might contain both the his tag and the linker region between the two homologous TMD-NBD halves of BSEP as it was detected by the K168 antibody that recognizes aa residues 688-702. Although both proteins should be concentrated roughly 500 -fold in this purification step, they could only be detected via Western blot. During MDR3 purification, Figure 31B, wash1).

As MDR3 expression gave high enough yields, its purification could be optimized further. First, the solubilization step was optimized by changing the mass ratio of membrane protein to detergent (Figure 32). Again, Fos-choline 16 was the most effective detergent for MDR3 solubilization. Here, a protein concentration of 2 $\mathrm{mg} / \mathrm{ml}$ was found to be more favourable than $5 \mathrm{mg} / \mathrm{ml}$ at a final detergent concentration of $0.5 \%(\mathrm{w} / \mathrm{v})$.

Figure 32. A sparse solubilization screen for MDR3 shows the impact of the protein:detergent ratio on solubilization. The concentration of the detergents indicated was set to $0.5 \%(\mathrm{w} / \mathrm{v})$ for the Fos-cholines and 1 $\%(\mathrm{w} / \mathrm{v})$ for DDM. After solubilization for 1 h at $4^{\circ} \mathrm{C}$, unsolubilized material was removed by ultracentrifugation. This material was then resuspended in the initial volume of membrane buffer and used for comparison with the supernatant. The variations in signal intensity in the pellet (P) lanes come from inhomogenous resuspension of the insoluble material.

In addition to this change during solubilization, the purification was scaled up from analytical gravity flow columns and batch loading of the $\mathrm{Ni}^{2+}-\mathrm{NTA}$ slurry to a larger bed volume used in an ÄKTA liquid chromatography system, and cobalt was used as the loaded metal cation providing a higher affinity than nickel.

As a result of these optimizations, the affinity purification of MDR3 from yeast membranes now yielded more substantial amounts of protein that could even be detected on a Coomassie-stained SDS-polyacrylamide gel (Figure 33B). For this, cells from 10 L of yeast culture were grown in 10% glycerol and used to prepare and solubilize whole cellular membranes, and the elution was with a step gradient from 0 to 300 mM Imidazol in five steps of 60 mM (Figure 33A, green trace). In the first elution step (at 60 mM Imidazole), a lot of unspecifically bound proteins were found to elute (red trace), while at the second and third peak the main fractions of the bound MDR3 were eluted (120 and 180 mM Imidazole, respectively; Figure 33B and C). Fractions containing MDR3 from peaks 2 to 4 were pooled (containing about 2 mg MDR3).

Figure 33. Optimized affinity purification of human MDR3. A Chromatogram of MDR3 IMAC purification. Red, UV signal at 280; green, elution buffer (300 mM). B, upper panel Coomassie stained SDS gel of the purification in A. Lower panel Silver stained SDS gel of the same. C Western blot of the IMAC samples.

The pooled eluate was concentrated (Figure 34A), and a portion of the concentrate was then subjected to gel filtration for further purification. The elution profile shows a sharp peak at the void volume (Figure 34B), indicative of substantial aggregate formation in the filtrated sample (fraction 4). This fraction was also found to contain MDR3, however, the main fraction of MDR3 eluted outside the void volume as a broad peak (Figure 34B and C). The width of the peak indicates that the MDR3 membrane protein together with detergent and yeast lipids forms a variety of micellar species of different size.

Figure 34. Gel filtration of affinity-purified MDR3. A Fractions containing recombinant human MDR3 eluted from the Co^{2+}-chelating material in Figure 32 were pooled and concentrated using a filter with a 100 kDa cutoff. B Using a Superdex 200 10/300 GL column, the material was gel filtrated. C The peak fractions were analyzed by SDS-PAGE and silver staining (left panel) or Western blot detection (right panel).

3.10 Moving Expression of BSEP from S. cerevisiae to Pichia pastoris

The screen of BSEP expression from several constructs with different promoters and his tag positions (see Results 3.5) did not lead to an expression suitable for the purification of preparative amounts. None of the used vectors in combination with either the N - or C-terminal his tag position led to a drastic increase in BSEP expression Also, the use of the chemical chaperone glycerol (Results 3.6) did not increase the yield to a point where attempts to purify BSEP became a feasible option (Results 3.9).

Because of this, the expression system was changed to another eukaryotic expression system, the methylotrophic S. cerevisiae Pichia pastoris. This unicellular organism has, like S. cerevisiae, the necessary eukaryotic processing and trafficking machinery to accomodate mammalian membrane proteins. In addition, it can reach much higher cell densities than are normally possible with S. cerevisiae. P. pastoris has been shown to be very suitable for the heterologous overexpression of several human ABC transporters before, including human MDR1 P-glycoprotein [195,197,199,265]. Notably, in one of these studies the expression of 25 human ABC transporters could be detected [199]. Interestingly, Chloupkova and co-workers did not report the expression of BSEP or MDR3, most probably due to cloning issues in E. coli as they were applying a ligation-independent cloning (LIC) strategy in order to clone several human $A B C$ transcripts in a high-throughput fashion. Also, MRP2 expression could not be detected in P. pastoris [199]. Notably, the crystal structure of recombinant mouse MDR3 (the murine MDR1 homologue) coming from P. pastoris was solved, as this expression system could provide the necessary quality and quantity of membrane protein [55].

BSEP Expression in Pichia pastoris

Expression in P. pastoris is frequently accomplished from the chromosomal AOX1 locus. The necessary recombination cassette is created by cloning the gene of interest downstream of the AOX1 promoter into one of several commercially available plasmids that can be maintained in E. coli, but not in S. cerevisiae. They contain the upstream sequence of the strong inducible AOX1 promoter followed by a multiple cloning site and a stretch of downstream AOX1 sequence so that the gene of interest (GOI), after cloning into this vector is flanked by sequences that surround the

AOX1 structural gene on its chromosomal locus. AOX1 is then replaced by the GOI via homologous recombination. Here, the P. pastoris integration vector pPIC3.5 was used. However, in order to achieve the chromosomal integration of the unstable BSEP cDNA along with the necessary vector-encoded sequences of the expression cassette, local assembly was deemed to be an impractical option as P. pastoris needs larger overlaps for an efficient site-specific recombination [266]. Such long overlaps are not easily added to the unstable GOI just with primers but instead require delicate fusion PCR reactions to splice together the whole linear expression cassette in vitro. In the light of the abundant clinical BSEP variants, such an approach is impractical.

Another point to be considered is that, by a local assembly strategy (see Results 3.3), multiple cassette integration events at the targeted chromosomal locus that are the basis of high-expressing clones [200] would become practically impossible. Three parts have to be recombined into the AOX1 locus in the Pichia genome to form the expression cassette: upstream AOX1 sequence, GOI, and downstream AOX1 sequence. This entails four crossing-over events; multicopy integrants, however, depend on efficient integration of a first copy of the expression cassette followed by tandem integration events. The need for four recombination events to generate just one copy at the targeted locus is incompatible with the occurence of multiple integration events.

3.10.1 The Pichia pastoris Integration Vector pPIC3.5 is made maintainable in S. cerevisiae for Recombination-Based Plasmid Construction

In essence, it would be favourable, if the pPIC3.5 vector could be made viable in S. cerevisiae, that is, maintainable and selectable. In a previous study, Vu and coworkers constructed a yeast-mammalian shuttle vector by integrating a mammalian expression cassette into the multiple cloning site of a S. cerevisiae plasmid [221]. In contrast, pPIC3.5 was prepared for manipulation in S. cerevisiae by integration of only the relevant sequence that is necessary for maintenance and selection in S. cerevisiae (Figure 35).

Figure 35. Moving BSEP expression from Saccharomyces cerevisiae to Pichia pastoris. A Toxic or unstable expression plasmids can be made for any system in S. cerevisiae by adding the necessary sequence to the plasmid backbone. In order to move BSEP expression from S. cerevisiae to Pichia pastoris, the pPIC3.5 recombination vector was double-digested to allow the simultaneous insertion of both the unstable BSEP coding sequence and a PCR-generated fragment of the YEpHIS plasmid carrying the 2 micron origin (Ori) of replication and the leucine (LEU) prototrophy marker by homologous recombination (RS = Ndel). The plasmid was recovered from yeast and obtained in preparative amounts from E. coli by cultivation at $30^{\circ} \mathrm{C}$. The sequence necessary for propagation and selection in yeast was then removed by restriction digest and religation to avoid possible interference after chromosomal insertion in P. pastoris.

For this, a PCR product comprising the Ori and LEU marker region from the YEpHIS plasmid was recombined into the single Ndel restriction site of pPIC3.5 simultaneously with a BSEP PCR product carrying a C-terminal his 8 tag and terminal overlaps to the sequence around the vector's BamHI cloning site (step 1). As this his tag location did not interfere with the expression of several other human ABC transporters in P. pastoris [199], it was also selected for BSEP. The resulting derivative pPIC3.5-CHISBSEP is identical to the construct that would be obtained by conventional bacterial cloning, with the exception that the backbone enhancement allows its maintenance and manipulation in S. cerevisiae. This construct was recovered from yeast and amplified in E. coli, taking the precautions described in Results section 3.5 (Figure 35). Prior to tranformation and integration into the
chromosomal Pichia AOX1 locus, the yeast Ori/LEU marker sequence was removed by digestion and religation of the vector. Abundant Pichia transformants were obtained and twelve of these tested for BSEP expression (Figure 36).

Figure 36. Human BSEP is expressed in P. pastoris. pPIC3.5-CHISBSEP was constructed as described in A and used to transform P. pastoris strain GS-115 by electroporation. Equal amounts of whole cell extracts from small-scale liquid cultures harvested after 48 h after induction were resolved by SDS-PAGE, electroblotted and probed with K168 [203]. Empty Ctrl, parental P. pastoris GS-115 strain.

As shown by Western blot, all of the tested clones expressed BSEP at various levels (Figure 36 lanes 2 to 13) as compared to the control (lane 1). The level of BSEP expression achieved in highly expressing P. pastoris clones was found to be suitable for further purification and subsequent biochemical studies in our lab (see Discussion).

3.11 The Site-Directed Mutagenesis of Human BSEP by a New, E. coli-Independent Approach

One of the most common methods to generate targeted mutations is the site-directed mutagenesis (SDM) procedure [267]. In this method, a pair of oligonucleotides carrying the intended sequence mutation is used in which one primer is the exact reverse complement of the other. The product of this SDM reaction exists in a noncovalently closed circular form in which the full length of both primers comprises the annealed single-stranded overlaps. The nicks in the phosphodiester backbone of both strands are repaired after transformation of the mutagenesis product into E. coli [267]. As a result of this primer complementarity, the SDM reaction is a linear copying and not an exponential amplification of the template plasmid. The product of one SDM cycle can not serve as a template in the next one (Figure 37, left side), and thereby polymerase-introduced sequence errors are kept at a minimum. For introducing directed mutations into toxic or otherwise unstable DNA such as the BSEP and MDR3 coding sequences, a different approach than standard SDM is needed as its product is a linearized, unstable plasmid that would perish in E. coli.

Figure 37. Primer binding on the mutagenesis products determines yield and the nature of the product termini. Left SDM product does not serve as template in the reaction. Absolute complementarity of the mutagenesis primers results in additional protection of the singlestranded termini (red circles) during annealing and extension steps due to their high T_{m}. Right SDM product is exponentially generated, from both template and product from previous cycles. The 20 bp 5'complementarities of the primers have a lower T_{m} and do not protect single-stranded ends by annealing. This decreases unproductive 5^{\prime} primer dimers, aiding in the exponential generation of product.

Sufficient amounts of plasmid template for the classic SDM approach can be obtained directly from S. cerevisiae (Results 3.5). However, all DNA in S. cerevisiae is unmethylated and thus cannot be removed from the final mutagenesis reaction mixture by Dpnl digestion [268,269,270]. If the template is not removed, the mutated product has to drastically outnumber the template for a suitable mutagenesis efficiency. The linear SDM reaction cannot achieve this. A change in the mutagenesis primer design from a complete to a partial, 5^{\prime}-overlap of the primer pair (Figure 37, right side) turns the mutant strand synthesis reaction of the classic SDM into an exponential, PCR-like reaction (Figure 38). Due to the primer shift, the generated product carries terminal priming sites that can be used for productive priming in subsequent reaction cycles (step 1 and 2). By strictly keeping the annealing temperature above the T_{m} of the primer pair overlap, the ends of the mutagenesis product become double-stranded (step 3). After transformation into S. cerevisiae, the mutagenesis product can be precisely recircularized by intramolecular homologous recombination of its overlapping ends.

Productive annealing is greatly favoured in

 1st cycle with shifted primer designAmplified, mutated ds-end product is converted into a circular plasmid in yeast by homologous recombination
Direct transformation of yeast
 with precipitated product

Also, product of 1st cycle is available as template in 2nd cycle

Template prepared from yeast

Figure 38. A modification of the classic SDM protocol for mutagenesis of unstable plasmids without E. coli. The product yield can be increased significantly by shifting the primer binding sites from a complete to a partial overlap (step 1, compare also [271]) that allows binding of the primers to mutagenesis product in subsequent reaction cycles (step 2). The minute amount of unmutated template used in the reaction is outnumbered by the yield of mutagenesis product. This allows for the direct transformation of S. cerevisiae without the need of prior template removal (step 3). The mutagenesis product is then recircularized by homologous recombination of the double-stranded ends.

The new primers are constructed according to the following guidelines: both primers are about 50 bp in length, with the 5^{\prime}-end consisting of 20 bp sequence overlap between the primers. This stretch is a minimum requirement for the later intramolecular homologous recombination that turns the mutagenesis PCR product into a circular plasmid in S. cerevisiae. Due to the exponential nature of the new sitedirected mutagenesis, the number of cycles is strictly kept at 18 as in the classic SDM protocol [272] in order to minimize PCR-introduced errors. In addition, a proofreading DNA polymerase is used with an error rate equal to that of the Pfu Ultra enzyme in the commonly used Stratagene kit [273].

Proof of Concept:

Targeted Mutagenesis of BSEP and MDR3 Constructs in S. cerevisiae

As proof of principle and to establish the efficiency of the yeast-based mutagenesis, the unstable, 12 kbp YEpHISBSEP plasmid was mutated with the new site-directed mutagenesis method, completely avoiding the use of E. coli. A primer pair was designed according to the devised guidelines that carried a missense mutation. This changes a glycine at amino acid postion 1032 to arginine (G1032R), thus introducing an additional BstBI recognition site into the vector (Figure 39). For comparison, SDM was also performed with a mutagenesis primer pair of classic design that contained the same mutation, which is a single nucleotide exchange at position 3094 (counted from the A of the BSEP cDNA start codon) from G to C. The shift to an exponential product generation can clearly be seen in Figure 39A (compare middle and right panel). As an additional control, a mock-treated SDM reaction (thermocycled without DNA polymerase) was included in the experiment. In both control and SDM, neither template nor product was detectable, and only a slight smear could be observed. This is not uncommon, as the standard SDM yield especially of large template plasmids not always permits visual detection on an agarose gel [272]. In addition, the repeated thermocycling is expected to result in the stepwise degradation of template. Nonetheless, competent yeast cells were directly transformed with all of the reactions. The mock-treated (left) and the standard SDM reaction (middle) did not result in the formation of yeast colonies, and only the modified site-directed mutagenesis protocol yielded abundant colonies. Classic SDM products can in theory be nick-repaired by yeast [274], while the modified product is recircularized by homologous recombination of its double-stranded ends. Clearly, the classic SDM
product yield was then insufficient for a successful chemical transformation of S. cerevisiae. In contrast, a single mutagenesis reaction of the new design was enough to give ~ 100 colonies after transformation (Figure 39A, right panel). 25 of the resulting transformants were picked and the targeted plasmid region was first amplified by colony PCR, then directly subjected to BstBI digestion (Figure 39B).

Figure 39. An unstable BSEP-plasmid is mutated with high efficieny, without the use of E. coli. A Only the modified SDM results in colony formation after direct transformation of yeast (right), whereas a mock-treated (without polymerase, left) and a standard SDM reaction (middle) do not yield transformants. B Successful mutagenesis results in the addition of a BstBI restriction site into the BSEP coding sequence. Colony PCR of the resulting transformants was performed with primers surrounding the mutagenesis site, and the resulting product was digested with BstBI. 19 of 25 clones carried the additional restriction site, corresponding to an mutagenesis efficiency of 76%.

From these 25 clones, 19 could be digested and thereby carried the introduced mutation, corresponding to a mutagenesis eficiency of 76%. This is well in the range of the 80 \% efficiency reported for the E. coli-based SDM by the kit manufacturer [272]. The plasmids from two randomly picked, BstBI-positive yeast clones were recovered and, after amplification in E. coli, the integrity of the complete BSEP coding region could be confirmed by sequencing.

The functionality of the new mutagenesis method was additionaly tested on the YEpHISMDR3 construct. Here, an E558Q mutant of MDR3 was generated that inactivates one of the ATP binding casettes in the NBDs (see Introduction 1.3). Primers were again designed according to the described guidelines, and the resulting transformants were sequenced. As shown in the electropherograms in Figure 40, this mechanistically relevant mutant could be constructed as described for the clinical BstBI mutation in Figure 39. Again, the integrity of the MDR3 coding region could be sequence-verified.

Figure 40. Sequence analysis of the E558Q YEpHISMDR3 missense mutation created with the E. coli free SDM. Upper panel Wild-type MDR3 sequence. Lower panel Sequence from MDR3 (E558Q). Arrows indicate the corresponding base changes. This mutation removes the catalytically important glutamate residue in the Walker B motif of the first NBD of MDR3 (see Introduction 1.3).

3.12 Rapid Site-Directed Mutagenesis and Expression Analysis of a Yeast-Enabled Mammalian BSEP Expression Vector

Essentially, the recombinant DNA techniques used and developed so far for the unstable BSEP and MDR3 sequences allow their cloning, maintenance, and mutagenesis in yeast. As many human membrane proteins are studied using mammalian cell lines, a consecutive step was to combine all established methods into a complete workflow that allowed the potential manipulation (see Results 3.10) and mutagenesis (Results 3.11) of plasmids used to express proteins in cell culture. This allows the study of aspects such as the localization of the transporter in a native cellular setting (i. e. human cell lines). Therefore, a yeast-compatible derivative of the mammalian BSEP expression vector pEYFP-N1-BSEP [210], that is used to study transporter localization in human cell lines, was created in analogy to the P. pastoris vector modification shown in Results 3.10.1 (see Figure 35). After sequence verification, the "yeast shuttle" construct could successfully be transfected into HEK293 cells with comparable efficiency as the parental non-yeast shuttle plasmid (Figure 41). The cell culture work and fluorescence microscopy was kindly performed by Dr. Claudia Stross (Department of Gastroenterology, Hepatology and Infectiology, Heinrich Heine University Düsseldorf) as part of a cooperation on the generation and analysis of clinically relevant BSEP mutations. Detection of the fluorescent eYFP-tag in the BSEP fusion protein showed the same localization of the ABC transporter expressed from both constructs to the plasma membrane (Figure 41A, B). From these observations, it could be concluded that the presence of the additional backbone sequence does not influence the properties of the construct in cell culture. In the yeast-enabled construct, the missense BstBI mutation was then introduced by the new E. coli-free SDM method described above. After plasmid recovery and subsequent transient transfection, the BstBI construct variant expressed in HEK293, MDCK, and HepG2 cells (Figure 41C). Comparison of the BstBI to wild type BSEP expression showed a different localization pattern: although the plasma membrane was consistently fluorescent in HEK293, MDCK and HepG2 cells, the cytoplasm showed a clear fluorescence that was not present in HEK293 cells transfected in the control or yeast-enabled wild type. This suggested an at least partial defect in trafficking of the mutated BSEP fusion protein to its cellular target location, the plasma membrane.

Figure 41. The yeast-maintainable mammalian BSEP expression construct is functionally indistinguishable from the non-yeast parental plasmid in cell culture. A HEK293 cells transfected with pEYFP-N1-BSEP [210]. B HEK293 cells transfected with pEYFP-N1-OriLeu-BSEP. Equimolar amounts of both constructs showed the same transfection efficiency as shown by FACS analysis. C HEK293 (upper panel), MDCK (middle), and HepG2 cells (lower panel) were transfected with the BstBI mutation in pEYFP-N1-OriLeu-BSEP that was introduced with the E. coli-free site-directed mutagenesis method. All cells were transfected with equimolar amounts of the respective constructs via the Fugene reagent according to the manufacturer's guidelines. After fixation, nuclei were stained with Hoechst 34580 (blue), and the fluorescence (green) of the eYFP tag in the BSEP fusion protein was observed.

4 Discussion

The bile salt export pump and the multidrug resistance protein 3 , two human $A B C$ transporters connected with severe hereditary diseases of the liver, could be overexpressed in two yeast species for the first time (Results 3.3 and 3.10). As a result of this work, in vitro biochemical studies on the purified BSEP and MDR3 ABC transporters can now be engaged. A constant source of protein is now available, from unicellular eukaryotes that, unlike mammalian or insect cell culture, can deliver substantial cell mass in a short amount of time. Equally important, the recombinant protein can now easily be adjusted to any arising needs: mutations of both clinical and mechanical relevance can be and have been generated with ease in the unstable BSEP and MDR3 coding sequences with an E. coli-independent sitedirected mutagenesis method (Results 3.11 and 3.12). With the BstBI (BSEP) and the EQ (MDR3) mutations, both a clinically and a mechanistically relevant mutation could be realized without any of the problems previously encountered when attempting mutagenesis in E. coli. Together with the means of in vivo homologous recombination in S. cerevisiae (Results 3.3, 3.4, 3.5, and 3.10), this constitutes a complete workflow that permits the generation of constructs from and manipulation of these unstable sequences without the use of a bacterial organism if this is required.

4.1 The Impact of Affinity Tag Position on the MDR3 Fusion Protein demonstrates the Empirical Value of Expression Screens

An unexpected finding was the drastic decrease in protein levels of the N-terminally his-tagged MDR3 upon change from chromosomal to plasmid-based expression. Both fusion proteins are, on the genetic level, identical, including the recombinant N termini. The chromosomal expression clearly shows that the recombinant protein itself is not intrinsically destabilized by the his tag at the N -terminus. It was, as all other expressed variants of both MDR3 and BSEP, associated with the membrane fraction, and MDR3 co-localized with the plasma membrane-resident Pdr5 (Results 3.7, Figure 20). Here, the comparison of both his tag positions on MDR3 showed an identical pattern of subcellular distribution, and thereby a mistargetting of the N terminal tag fusion can be ruled out. In support of this, the M8001 mutant of MDR3 conferred a weak cellular resistance in S. cerevisiae against the antifungal compound FK506 (Results 3.8, Figure 22), which also indicates a functional protein at the
plasma membrane. Also, the chemical chaperone glycerol did not rescue the low plasmid expression of Nhis ${ }_{14}$-MDR3 (Results 3.6, Figure 19). All this is indicative of a properly folded and targeted integral membrane protein. What then remains to explain this difference in expression of two identical proteins? Both the PDR5 and PMA1 promoter are highly active during the exponential growth phase and were found to be of comparable strength in the pdr1-3 strain background used throughout this study, because in highly enriched plasma membranes of pdr1-3 S. cerevisiae cells Pdr5 and and Pma1 were two dominant protein bands of comparable intensity [186]. The nature of the two mRNAs expressed from chromosome or plasmid may be very different with respect to translational activity or lifetime. Figler and colleagues added a short stretch of the 5^{\prime}-untranslated region ($5^{\prime}-$ UTR) of the highly expressed PMA1 gene [11] to their YEpHIS construct downstream of the PMA1 promoter and found an increased MDR1 expression [182]. In the empirical approach to obtain overexpression, the levels of the two mRNA species were not quantified and leave potential differences in mRNA stability to speculation.

The unexpected impact of the same affinity tag in different settings in any case illustrates the value of empirical screening approaches in the attempt to push the expression of a given protein: a single-copy, N-terminal fusion protein expression leads to higher expression than the multi-copy version, against expectations that would be the result of an "educated guess". Expression levels for MDR3 with a Cterminal his tag reach those that are achieved for MDR1 in S. cerevisiae [182]. Here, a yield of milligram amounts per L of mid-log growth phase culture was reported. The C-terminal tag variant of MDR3 expressed from plasmid in the same range of yield and could be preliminary affinity-purified to an amount of about 2 mg from a 10 L culture (Results 3.9). One potential way to further increase MDR3 yield in S. cerevisiae is the reintroduction of the corresponding coding sequence into the PDR5 locus. First, chromosomal expression of MDR3 with a C-terminal tag can be expected to result in higher yields, because every cell in the culture carries the expression cassette as an part of its genome. This is not the case in plasmid-based expression, where the plasmid copy number in the cell population can fluctuate throughout the fermentation process [275]. Additionally, the metabolic cost of plasmid selection on the cells is abolished (growth in the presence of antibiotics, or the need to synthesize an amino acid missing in the growth medium), and in the case of S.
cerevisiae, rich media can be used for the expression of stably integrated coding sequences.

4.2 Overexpression of Human BSEP

Low BSEP Expression in S. cerevisiae

In contrast to the strong influence of the tag position on MDR3 expression, the low expression of BSEP from the PDR5 locus with a N-terminal his ${ }_{14}$ tag was found to be independent on tag position. A shift from the N - to the C -terminal tag configuration did not increase the expression from the same construct that was also used for MDR3 (Results 3.4). An expression screen probing the combination of both his tag positions with a set of different promoters failed to produce an overexpressing BSEP vector (Results 3.5). The strain background was strictly kept to the $\triangle P P$ strain for two reasons: several native yeast membrane proteins could be overexpressed from the PDR5 locus [191], and the absent major PDR transporter PDR5 does not interfere with cellular drug assays (Results 3.8). The most influential strain characteristic with respect to heterologous protein production is likely to be the cellular repertoire of chaperones that facilitate protein folding and proteases that remove misfolded proteins. While there is a number of protease-deficient available S. cerevisiae strains, degradation did not seem to be a problem as judged from Western blots of whole cell lysates (Results 3.3 and 3.4). For the BSEP transporter, that is less homologous to the good "yeast-expresser" MDR1 than the better-expressing MDR3, S. cerevisiae may simply be a suboptimal choice. The bile salt export pump may need specific interacting proteins (such as human chaperones [276]), or the mRNA might be translated with limited efficiency due to differences in codon usage. Obvious differences in BSEP codon utilization that might give rise to problems after the switching from human to expression in yeast were not found. Under such vague circumstances, that are commonplace when starting to work on a membrane protein of interest (reviewed in [276]), a first empirical screening approach should always encompass different expression systems in order to produce a first "hit". S. cerevisiae proved to be such a first hit on the way to the large-scale (i. e. mg / L) protein production of BSEP. The test of other yeast species may change the repertoire of chaperones and proteases (along with a plethora of other parameters) in favour of a better target protein expression.

BSEP can be purified from Pichia pastoris
The usefulness of P. pastoris as a suitable host for membrane protein overexpression is firmly established (see Introduction 1.7). Supporting this notion, human BSEP could be brought to overexpression in P. pastoris (Results 3.10). The affinity purification of BSEP from this source was subsequently accomplished and is currently under optimization (personal communication by M.Sci. Philipp Ellinger). For this, the expression cassette was changed from a C-terminal, single his 8 tag to a dual tag configuration that comprises both $\mathrm{a}^{\text {his }} 8$ and a calmodulin binding peptide (CBP) tag [199]. This allowed for a tandem affinity purification procedure which yields preparative amounts of protein of high purity in two steps.

4.3 Further Steps towards In Vitro Studies of BSEP and MDR3

The example of MDR3 shows the next necessary steps: further purification and reconstitution into proteoliposomes of both wild type and relevant mutant protein variants. Gel filtration of detergent-solubilized MDR3 resulted in the separation of aggregates in the void volume of the column and a broad peak that contained the protein along with other impurities, that at least partially are derived from MDR3 itself (Results 3.9). Upon concentration by filter membranes with a proper molecular weight cutoff these impurities remained, suggesting that these MDR3 fragments were residing in detergent micelles that could not pass the pores of the filter device. This assumption is supported by the observed molecular weight of the two main fragments which correspond to about half the size of the full-length protein and therefore most likely contain transmembrane segments. A similar cleavage pattern was observed for BSEP upon solubilization in Fos-choline 16 (Results 3.9, Figure 31). The continued state of solubilization in micelles of this comparatively strong detergent may facilitate the degradation of MDR3 throughout the purification process. To solve this problem, an exchange on the IMAC column to a more gentle detergent such as DDM may be helpful [277]. The exchange to gentler detergents may lead to micelles in which the membrane protein is more protected from proteases and its native conformation is less compromised. In addition, a detergent that keeps the protein "happy" in solution can have substantial impact on the homogeneity of the protein-micelle population and thereby facilitate purification by forming a sharper elution peak during gel filtration than found with the initial, solubilizing detergent (Results 3.9, Figure 34).

Functional, Cysteine-Free, and Glycosylation-Deficient Mutants

Another step that is directed more towards potential structural studies of MDR3 and BSEP is an increased homogeneity of the purified proteins themselves. This can either be achieved by generating non-functional, "dead" mutants in which the catalytically relevant glutamate residues in the non-degenerate NBDs (one in BSEP, two in MDR3) are substituted by glutamine residues [35,59]. A bound substrate or inhibitor may be capable of locking these protein variants in one or a narrow ensemble of similar conformations. Another way to limit conformational diversity of a protein in heterologous systems is the generation of a cysteine-free version of the wild-type protein. Cysteines can form disulfide bridges in vivo, and heterologous expression into the ER of a host that may not be able to facilitate their correct formation can result in a heterogeneity of protein conformations, which in turn prevents ordered formation of a crystall lattice. A functional cysteine-less mutant of mouse P-gp was generated and expressed in P. pastoris [278]. Erroneous glycosylation may be another source of protein microheterogeneity, which may be abolished by mutation of the residues (asparagine and arginine in N -glycosylation). Hyperglycosylation may also be an impediment to overexpression in some cases [276]. Using the new SDM method, any of these mutations can be introduced with little effort into BSEP and MDR3 expression constructs.

4.4 Lack of a Cellular Phenotype of BSEP Expression in S. cerevisiae

The finding that the BSEP substrate taurocholate inhibited S. cerevisiae growth already at a concentration below 1 mM , while BSEP expression from none of the constructs conferred resistance against this conjugated bile salt (Results 3.8), gives rise to several questions. According to subcellular fractionation experiments (see Results 3.7), intact BSEP is at least partially located at the yeast plasma membrane. The lack of mammalian glycosylation patterns in either S. cerevisiae or P. pastoris is highly unlikely to result in an inactive protein as several MDR efflux pumps that feature various degrees of glycosylation in their native tissue could be functionally expressed in both yeast species [181,182,183,184]. Human MDR1, which in this study was used as an expression control, was fully functional in S. cerevisiae and conferred a multidrug resistance phenotype (Results 3.8, Figure 21). Why then is no taurocholate resistance observed? The mode of taurocholate-mediated cytotoxicity is
assumed to be the disruption of the yeast plasma membrane by solubilization. The low expression levels of its cognate export pump may simply be insufficient to protect the cells against the toxic effect of TC. Future resistance assays conducted on BSEP-expressing Pichia recombinants may prove more conclusive, although expression during growth on solid media may differ significantly from that achieved by fermentation. A prerequisite for these resistance assays is the correct localization of BSEP to the plasma membrane of Pichia which can be investigated by subcellular localization.

4.5 The M800I Variant of MDR3

A mutated, N -terminally his $_{14}$-tagged MDR3 that had a methionine to isoleucine exchange at amino acid position 800 conferred a weak resistance against the antifungal compund FK506 in S. cerevisiae (Results 3.8, Figure 22). The wild type protein, in contrast, failed to protect the yeast cells, although both variants are expressed to the same extent (Results 3.3, Figure 9). This was an unexpected and intriguing finding, since this mutation seems to result in an at least partially altered substrate spectrum of this highly specific phosphatidylcholine translocase [83]. Although MDR3 was shown to transport a few compounds in polarized monolayers of transfected cells to some extent [175], this compound was not tested in that study. The M800I mutation has not yet been described in a clinical or mechanistic context. A multiple alignment of MDR1, MDR3, and BSEP from mouse, rat and human shows that this residue is located in a conserved sequence stretch (Figure 1) that comprises the intracellular loop between transmembrane helices 7 and 8 in the structure of the closely related mouse MDR1 (Figure 2). In human MDR1, this position is occupied by a valine residue, and in all other cases an isoleucine is found at this position.

Interestingly, this loop has previously not been implicated in interdomain crosstalk (see Introduction 1.3). For this, the interface made by the coupling helix and the structurally diverse region of the NBDs was the central candidate [279]. If this mutation has mechanistic relevance and causes not some random pleitropic effect, then this highly conserved residue has a role in interdomain communication: its mutation allows the triggering of the catalytic export cycle by ATP binding in the NBDs in response to FK506 binding which is assumed to take place in the central cavity formed by the two TMD segments.

KSMLRQDISWFDDHKNSTGSLTTRLASDASSVKGAMGARLAVVTQNVANLGTGVILS--L 849 KSMLRQDISWFDDHKNTTGSLTTRLASDASNVKGAMGSRLAVVTQNVANLGTGIILSLVL RSMLRQDVSWFDDPKNTTGALTTRLANDAAQVKGAIGSRLAVITQNIANLGTGIIIS--F KAMLRQDMSWFDDHKNSTGALSTRLATDAAQVQGATGTKLALIAQNTANLGTGIIIS--F KAMLRQDMSWFDDHKNSTGALSTRLATDAAQVQGATGTRLALIAQNTANLGTGIIIS--F KAMLRQDMSWFDDHKNSTGALSTRLATDAAQVQGATGTRLALIAQNIANLGTGIIIS--F KAMLRQDIGWFDDLKNNPGVLTTRLATDASQVQGATGSQVGMMVNSFTNIFVAVLIA--F KAMLGQDIGWFDDLRNNPGVLTTRLATDASQVQGATGSQVGMMVNSFTNIIAALLIA--F RAMLGQDIAWFDDLRNSPGALTTRLATDASQVQGAAGSQIGMIVNSFTNVTVAMIIA--F

MDR1_MOUSE MDR1_RAT MDR1_HUMAN MDR2-MOUSE MDR2-RAT MDR3-HUMAN ABCBB_MOUSE ABCBB_RAT ABCBB_HUMAN

Figure 1. Multiple alignment of MDR1, MDR3, and BSEP from mouse, rat, and human. Alignment made with ClustalW2 on the Expasy website (www.expasy.ch). M800 is found in a highly conserved stretch of sequence that comprises the intracellular loop between the transmembrane helices 7 and 8 of the second TMD. Mouse MDR1 is the murine $A B C B 1$.

Figure 2. Putative localization of the M8001 mutation on the mouse P glycoprotein. The crystal structure comes from mouse ABCB1, the murine functional homologue of the human MDR1 efflux pump [55]. Left side Overall structure of mouse P-gp. Four helices of the cis and two of the helices from the trans TMD in this inward opened structure form a clustered transmembrane segment interfacing each of the NBDs. Right side Detail of the TMD loops interfacing with the NBD. The mutation is located in the connecting loop between TM helices 7 and 8 of the cis helix bundle part in the second NBDs' TM segment. Amino acid position 800 is in the center of a stretch of residues conserved in mouse ABCB1, human MDR1 and MDR3 P-glycoproteins. Interestingly, only MDR3 has a methionine at position 800, while both the mouse and human efflux pumps have a valine in this position (the corresponding residue is depicted in the structure in green).

Further studies based on systematic mutations in this loop and in its counterpart helix in the other TMD unit are needed to pinpoint the exact mechanistic role of this residue and the cytosolic helix it resides in.

4.6 Lack of MRP2 Expression in S. cerevisiae

The lack of MRP2 expression in S. cerevisiae is likely to be an intrinsic characteristic of this transporter in general, as both a C- and an N-terminal tag position were tried and found not to express (Results 3.2 and 3.8, Figures 6 and 28, respectively). Interestingly, MRP2 also did not express in Pichia pastoris (supplementary material to [199]). In general, S. cerevisiae should be capable to correctly fold and traffic a membrane protein of MRP-type topology as its genome contains several MRP-type ABC transporters [180]. One (empirical) option that might lead to expression is the removal of the extra, N-terminal TMD0 segment of MRP2. This five transmembranehelix domain was found to be dispensable for transporter function [157,158], although it was necessary for apical membrane sorting for MRP2 [156]. After its deletion on an expresion plasmid, both his tag configurations can again be tested for a detectable expression. In this context, either a suitable antibody has to be found that does not detect any of the native ABC transporters in S. cerevisiae that shape its wild-type repertoire, or a more suitable strain should serve to probe for MRP2 expression in future attempts. Interestingly, the background detected by both the MLE and the M_{2} III-6 antibodies was not present in the AD1-8U` strain that is devoid of seven PDR and compound efflux related ABC transporters (Results 3.2, Figure 6). Since both yeast strains lack the PDR5 gene, this ABC transporter can be ruled out as the source of the intrinsic immunoreactivity. Pdr5 is, at any rate, not a MRP-type ABC transporter. Of the transporters that are absent in AD1-8U', only Yor1 and Ycf1 belong to the MRP/CFTR-subfamily of S. cerevisiae ABC proteins [280]. Yor1 lacks the TMD0 segment, but has a large, N-terminal cytosolic loop that is found between the TMD0 and TMD1 domains in human MRP1, 2, and Ycf1 of S. cerevisiae. A sequence analysis indicates similar C-terminal portions of Yor1, Ycf1, and MRP2 that might all be recognized by the monoclonal M_{2} III- 6 antibody, while the N -terminus of MRP2 recognized by the polyclonal MLE antiserum is not conserved in Yor1 and Ycf1. So most likely the cross-reaction comes from one of these ABC transporters.

4.7 DNA Cloning and Manipulation in S. cerevisiae

4.7.1 Yeast Recombination as a Flexible Tool in High-Throughput Applications

As shown in this work, recombination-based cloning in S. cerevisiae has tremendous potential for high-throughput expression screening (for example, see [281]), because cloning and expression can be accomplished in the same cell, and the resulting transformants can instantly be screened for protein expression. The construction and expression test of the first yeast BSEP expression plasmids (Results 3.4) can, from obtaining the gapped plasmid backbones by restriction digest and performing the BSEP PCRs to the final Western blot detection, be completed in as little as six days, which may be considered a short time-frame when working with such unstable constructs. A complete recombinatorial expression screen as shown for BSEP can be achieved in as little as two weeks (Results 3.5, Figure 15). Currently, several sets of S. cerevisiae expression vectors are available that include different promoters and a variety of available tags at both ends (for a good overview, see http://web.unifrankfurt.de/fb15/mikro/euroscarf/). Most, if not all of these sets are built in a similar fashion, meaning that with a single primer pair for the insert all vectors in the set can be used.

4.7.2 Non-Yeast Plasmids and their Manipulation in S. cerevisiae

In order to use any given plasmid for direct cloning in yeast, it has to be properly maintained, replicated, and selected for in this organism. This is easily accomplished by the addition of a yeast 2 micron ori and prototrophy marker sequence as shown for the pPIC3.5 vector (Results 3.10.1, Figure 35) and the mammalian expression vector pEYFP-N1-BSEP (Results 3.12). Notably, it was subsequently found for the pPIC3.5 construct that the Ori/LEU sequence could be left in the backbone as its presence on the chromosomal AOX1 locus did not seem to impact on BSEP expression or the viability of P. pastoris.

4.7.3 Recovery of Unstable Plasmids from Yeast and Propagation in E. coli

Genes and DNA sequences in general can be unstable in their bacterial host for a variety of reasons, including: extensive secondary structure (e.g. z-DNA [223]), inverted or direct sequence repeats, encoding a gene product toxic to host metabolism, or carrying unintended prokaryotic signal sequences as was the case for

BSEP [174]. BSEP plasmids were, once constructed in yeast, found to be sufficiently stable in E. coli at $30^{\circ} \mathrm{C}$. Plasmid integrity could be verified by analytical restriction digest and DNA sequencing. In this context, it should be noted that, although some groups have at succeeded in creating full-length human BSEP constructs, their generation in E. coli has not been a straightforward procedure due to the instability of the BSEP and MDR3 cDNAs [174,175,207,222]. Another issue regarding their handling is the seemingly random loss of bits of the coding sequence when trying site-directed mutagenesis using E. coli. This most probably arises due to bacterial selection of incomplete, dysfunctional plasmid species that are stable und thus retain the encoded selection marker upon recircularization in their host. While the amplification of an intact construct in bacteria is highly unlikely to be a general option when attempting this for other unstable or toxic coding sequences, changing the host back to E. coli after yeast recombination has one advantage: unlike in a ligation mixture that contains a heterogenous mix of linearized vector, insert, partial and complete vector-insert ligations, the unstable plasmid recovered from yeast is in a nick-free and intact form. Several E. coli strains that are custom-tailored to meet diverse requirements can then be tested for their propagation properties, starting from the common basis of an intact construct.

4.7.4 General Advantages of S. cerevisiae as a Cloning Tool

In bacterial cloning, a large (i. e. in the range of several kbp) insert already is prone to inefficient cloning due to size bias [229], while generally being of no concern in yeast recombination. For the efficient, high-throughput cloning of such inserts in E. coli, ligation-independent cloning (LIC) [282] is often applied to streamline the process and optimize cloning efficiency [283]. This necessitates the introduction of LIC linker sequences that, depending on the strategy, can lead to the introduction of extra amino acid residues to at least one end of the protein. The homologous recombination process on the other hand has the additional advantage of utilizing existing constructs without any need to modify the cloning site with LIC linkers, while being as high-throughput compatible.

4.7.5 The New, E. coli-Independent Site-Directed Mutagenesis Approach

A critical review of the classic SDM mechanism [267] was the necessary basis of attempting an E. coli-independent approach. In this method, a pair of oligonucleotides carrying the mutation is used in which one primer is the exact reverse complement of the other. Both will form a perfect short stretch of doublestranded DNA. In the presence of the plasmid template, a small but sufficient percentage of both primers also bind to their respective priming sites on the template DNA. A DNA polymerase extends each primer around the length of the plasmid until the very nucleotide behind the 5 '-end of this same primer. Upon reaching this end, the enzyme stalls and falls off the double-stranded DNA, leaving behind a nick in the phosphodiester backbone. As a result of primer complementarity, the product of this SDM reaction exists in a non-covalently closed circular form in which the full length of both primers comprises the annealed single-stranded overlaps. Both nicks are repaired after transformation of the reaction product into E. coli [267].

Why Template Removal is necessary in Classic SDM

Due to the non-exponential nature of the mutagenesis step, the mutagenesis product is not in great excess over the unmutated template. Thus the latter needs to be removed by digestion with the restriction endonuclease Dpnl which recognizes the template due to its Dam-mediated methylation obtained in the bacterial host from which it comes. Otherwise a great percentage of the picked clones will contain the original plasmid without the mutation. This methylation is not a feature of the mutated product generated in vitro, and Dpnl recognizes and cleaves methylated and hemimethylated (consisting of heteroduplex DNA formed by template and mutagenesis product) double-stranded DNA. The recognition site ($5^{\prime} . . . \mathrm{G} \mathrm{mbA}^{\wedge}$ T C...3') consists of four base pairs and occurs quite frequently, so the unmutated DNA is cleaved into short fragments and thus efficiently removed. The remaining amount of mutagenized DNA is sufficient to chemically transform highly competent E. coli cells.

Due to Full Primer Complementarity, the Classic SDM is a Non-Exponential Reaction The SDM reaction is, however, a non-exponential, linear copying rather than an exponential amplification of the template plasmid. The reason for this is again found in the absolute primer complementarity: the product of the first SDM cycle has, as
explained above, single-stranded ends that are comprised of the primers themselves. These in turn can again fully bind their respective counterpart, which, however, is an unproductive priming situation. As a result, the product of one SDM cycle can not serve as a template in the next one. The SDM method is designed based on the reasoning that sequence errors introduced by DNA polymerase nucleotide misincorporation should be kept at a minimum. If a nucleotide misincorporation were to occur in one cycle of an exponential, polymerase chain reaction, this error would be exponentially copied in subsequent cycles. This is simply prevented by the nonexponential nature of the SDM procedure as only the original can copied in each mutagenesis cycle.

Designing a New Site-Specific Mutagenesis Procedure Based on Classic SDM

For introducing directed mutations into toxic or otherwise unstable DNA such as the BSEP and MDR3 cDNA, a different approach than standard site-directed mutagenesis is needed, since the usage of E. coli must completely be avoided. It has been shown in Results 3.5 that only intact BSEP and MDR3 plasmids (constructed by homologous recombination in and recovered from S. cerevisiae) could be maintained with sufficient stability in E. coli. The site-directed mutagenesis product, however, is not an intact, nick-free plasmid as discussed above. Sufficient amounts of plasmid template for the classic SDM approach can be obtained directly from yeast (see Results 3.5). However, all DNA in S. cerevisiae is unmethylated and thus cannot be removed from the final mutagenesis reaction mixture by Dpnl digestion [268,269,270]. While it is possible to methylate the template DNA in vitro, this is hardly a practicable way as this constitutes several additional reaction steps, complicates handling, and a complete methylation can be considered unobtainable under in vitro conditions. If the template is not removed, the mutated product has to drastically outnumber the template for a suitable mutagenesis efficiency. Generating more product is also a prerequisite for the efficient transformation of yeast cells, as this requires more DNA than is generated during a SDM reaction. Finally, to obtain transformants directly from S. cerevisiae, the linear product obtained from a polymerase-based procedure needs to be precisely recircularized by its host, even after a change in primer design.

Turning the Classic SDM Reaction into a Genuine, Exponential PCR

By changing the mutagenesis primer design from a complete to a partial, 5'-overlap of the primer pair the mutant strand synthesis reaction from classic SDM is turned into an exponential, PCR-like reaction. Due to this extensive primer shift, a product is generated that carries terminal primer binding sites that can be used for productive priming. As a result, the mutagenesis product functions as a template in all subsequent reaction cycles. A similar shift of primer positions has previously been reported in a different context [271], where a more efficient simultaneous introduction of more than one mutation in E. coli was desired. By strictly keeping the annealing temperature above the T_{m} of the 5^{\prime}-overlap of the primer pair ($T_{\mathrm{ann}}=60^{\circ} \mathrm{C}$), the ends of the mutagenesis product should become double-stranded. The different impacts of both the classic and the new primer design on the mutagenesis are compared in detail in Figure 3. The new primers are constructed according to the following guidelines: both primers are about 50 nt in length, with the 5^{\prime}-end consisting of 20 nt sequence overlap between the primers (lower panel, left).

Figure 3. Impact of the different primer designs on template binding and in vivo product repair in site-directed mutagenesis. Upper panel Classic SDM. The primer pair forms a perfect double strand due to absolute complementarity. Lower panel New, E. coli-independent SDM. The primer pair forms only a partial double strand, while the full length of each oligonucleotide can bind to the template. Dark grey stretches indicate the reverse-complementary regions on the primers.

This simple, yet fundamental change in primer design is apt to instantly solve all problems encountered upon dismissal of E. coli for mutagenesis: I) Template removal. The unmutated template can be left in the reaction mixture. The exponentially generated reaction product significantly outcompetes the minute amount of used template (10 ng). Thus, the template can be unmethylated and come directly from yeast. II) Yield. A single reaction is now sufficient to chemically transform yeast cells. With the amounts obtained with classic SDM, many more reactions would need to be pooled, and this would inevitably result in a substantial number of false positive clones, because the mutagenesis template has, if toxic, to come directly from yeast, and then can not be removed. III) Product repair in the target organism. Instead of single-stranded overlaps made up by the mutagenic primer pair, the mutagenesis product by the different primer design is endowed with double-stranded ends of identical sequence that allow its precise recirculation by homologous recombination into an intact, selectable plasmid (Figure 3, lower panel, right). The 20 nt 5^{\prime}-overlap is a minimum requirement for this [284]. At the same time it should not be too long as this results in an increase of unproductive primer dimerization against which the template has to compete (compare upper and lower panel, left and middle). As a rule, this stretch should never exceed 40% of the whole primer length for preferred template binding. The modified primer design of the presented, yeast-based SDM is simple and like the classic SDM covers by definition all aspects of mutagenesis (Figure 4): mutation, insertion and deletion (including large deletions).

Figure 4. Mutation, insertion, and small or big deletions with the new SDM primer design. The shifted primer design of the exponential, S. cerevisiae-based SDM approach allows for any of the manipulations that the classic SDM permits. Dark grey boxed areas indicate the 20 nt stretch of reverse-complementary.

The primer pair for yeast-based SDM can easily be designed by the following basic rules: each oligonucleotide should be around 50 bases long, with 20 bases of 5^{\prime} primer-to-primer overlap for an efficient recombination of the mutated plasmid ends in yeast, carrying the mutation, deletion or insertion in their middle, and 30 bases of 3^{\prime} sequence for template annealing. Due to the exponential nature of the new sitedirected mutagenesis, the number of cycles is strictly kept at 18 as in the classic SDM protocol [285] to minimize PCR-introduced errors. Also, a proofreading DNA polymerase is used with an error rate equal to that of the Pfu Ultra enzyme in the commonly used Stratagene kit [273]. All analyzed clones so far faithfully replicate the template sequence in addition to the introduced mutation. Still, after obtaining the desired toxic gene mutation, one should confirm the integrity of all features needed for subsequent cloning steps of a project, e. g. before shuttling a mutated plasmid back into cell culture, the complete relevant sequence should be verified.

Restriction Sites as Markers for Successful Mutagenesis

Only some mutational changes that effect the change of an amino acid or its deletion result in the addition or disappearance of restriction sites on the mutated DNA. Since the primer cover a sequence of about 50 nucleotides, this stretch is bound to contain cryptic or complete restrition sites that can be activated or inactivated, respectively, by a second mutation encoded on the mutagenic primer. This second mutation then serves as a marker for the first, "restriction-silent" mutation in the subsequent analysis of transformant yeast clones by colony PCR. Additionally, it only needs to be designed into one of the primers when located outside the $20 \mathrm{nt} 5^{\prime}$, primer-primer overlap region. The only limitation for this analytical mutation is that it should not be among the first 10 bases of the oligonucleotide as this may compromise priming.

Figure 5 shows a detailed comparison of the E. coli- and yeast-based SDM procedures. In classic SDM (left side), the template has to compete with the oligonucleotides for priming because they allow for just as much base pairing as itself, if the primer-template mismatch due to the mutation is not taken into account. In contrast, the reduction of the primer complementarity to 20 nt (right side) greatly favors the annealing of the full 50 nt to the template in the first cycle (step 1 and 2). More importantly yet, it still outcompetes in subsequent cycles, when the shifted primers can not only again bind to the plasmid template at full length, but also to the
product template with 30 nt (step 3). While the 10 additional nt in comparison with the 20 nt primer-primer interaction may not drastically favor mutagenesis product priming in the second cycle, already at the end of this cycle the first product molecules with double-stranded ends appear, which subsequently are drastically preferred priming targets that, like the template, offer the full 50 nt of binding.
(1)

 start of 1st cycle

and cycle

product of 1st cycle is not available
product of 1st cycle is available as template in 2nd cycle

(4)
ss-end product

ds-end product

Figure 5. Comparison between the classic and the new, E. coli-independent site-directed mutagenesis method. Left cartoon side The classic site-directed mutagenesis (SDM). The mutagenesis primers perfectly overlap (step 1). As a result, the single-stranded ends of the product (steps 2 and 4) are not available as template in further cycles (step 3). Right cartoon side The change in primer design to a partial overlap results in preferred template binding (step 1). Thus, the ends of the product (steps 2 and 4) are available as productive primings sites in following reaction cycles (step 3). So already in third cycle, the first completely double-stranded product molecules appear.

Outlook

In the course of the practical work on this thesis, a complete workflow for the cloning and manipulation of unstable or otherwise toxic genes was established that consists of several, partially well-established procedures. It permits their quick cloning into any plasmid, the simultaneous construction and screening of several expression vectors, and the introduction of point mutations, utilizing a minimum of resources and handson time. This approach proved to be vital to this project as it gave the first-time heterologous overexpression of the unstable BSEP and MDR3 cDNA in two yeast species. Due to the new, E. coli-independent mutagenesis method, both mechanistic and disease-associated mutations of these two human liver ABC transporters can now rapidly be generated and analyzed in cell culture or in vitro. Particularly the new approach to targeted mutagenesis should prove helpful in future endeavors where functionally relevant mutants of proteins up to now could not be studied due to limitations in their bacterial cloning.

Several novel clinical BSEP mutations have been recreated in cell culture models by the new mutagenesis method and are currently being studied on the cellular level.

The purification of BSEP and MDR3 is currently being optimized on both the genetic and the biochemical level. Future in vitro studies utilizing the two expression systems will aim at elucidating the function of these challenging membrane proteins in health and disease.

References

1. Lewin B (2007) Cells. Sudbury, Mass.: Jones and Bartlett Publishers. xix, 863 p. p.
2. Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175: 720-731.
3. Vereb G, Szollosi J, Matko J, Nagy P, Farkas T, et al. (2003) Dynamic, yet structured: The cell membrane three decades after the Singer-Nicolson model. Proc Natl Acad Sci U S A 100: 8053-8058.
4. Saier MH, Jr. (1999) A functional-phylogenetic system for the classification of transport proteins. J Cell Biochem Suppl 32-33: 84-94.
5. Saier MH, Jr. (2000) A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol Mol Biol Rev 64: 354-411.
6. Saier MH, Jr. (2000) Families of proteins forming transmembrane channels. J Membr Biol 175: 165-180.
7. Agre P, Kozono D (2003) Aquaporin water channels: molecular mechanisms for human diseases. FEBS Lett 555: 72-78.
8. Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry. New York: W.H. Freeman. 1 v. (various pagings) p.
9. Serrano R (1978) Characterization of the plasma membrane ATPase of Saccharomyces cerevisiae. Mol Cell Biochem 22: 51-63.
10. Malpartida F, Serrano R (1980) Purification of the yeast plasma membrane ATPase solubilized with a novel zwitterionic detergent. FEBS Lett 111: 69-72.
11. Serrano R, Kielland-Brandt MC, Fink GR (1986) Yeast plasma membrane ATPase is essential for growth and has homology with ($\mathrm{Na+}+\mathrm{K}+$), $\mathrm{K}+-$ and $\mathrm{Ca} 2+-$ ATPases. Nature 319: 689-693.
12. Kaplan JH (2002) Biochemistry of Na,K-ATPase. Annu Rev Biochem 71: 511-535.
13. Skou JC (1957) The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta 23: 394-401.
14. Henderson R, Unwin PN (1975) Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257: 28-32.
15. Holland IB (2003) ABC proteins : from bacteria to man. Amsterdam ; Boston: Academic Press. xxiii, 647 p. p.
16. Higgins CF, Haag PD, Nikaido K, Ardeshir F, Garcia G, et al. (1982) Complete nucleotide sequence and identification of membrane components of the histidine transport operon of S. typhimurium. Nature 298: 723-727.
17. Linton KJ, Higgins CF (1998) The Escherichia coli ATP-binding cassette (ABC) proteins. Mol Microbiol 28: 5-13.
18. Bauer BE, Wolfger H, Kuchler K (1999) Inventory and function of yeast ABC proteins: about sex, stress, pleiotropic drug and heavy metal resistance. Biochim Biophys Acta 1461: 217-236.
19. Dean M, Rzhetsky A, Allikmets R (2001) The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 11: 1156-1166.
20. Dean M, Allikmets R (2001) Complete characterization of the human ABC gene family. J Bioenerg Biomembr 33: 475-479.
21. Higgins CF (1992) ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8: 67-113.
22. Serres MH, Goswami S, Riley M (2004) GenProtEC: an updated and improved analysis of functions of Escherichia coli K-12 proteins. Nucleic Acids Res 32: D300-302.
23. Ernst R, Kueppers P, Stindt J, Kuchler K, Schmitt L (2010) Multidrug efflux pumps: Substrate selection in ATP-binding cassette multidrug efflux pumps - first come, first served? FEBS Journal 277: 540-549.
24. Kerr ID, Jones PM, George AM (2010) Multidrug efflux pumps: The structures of prokaryotic ATP-binding cassette transporter efflux pumps and implications for our understanding of eukaryotic P-glycoproteins and homologues. FEBS Journal 277: 550-563.
25. Crowley E, Callaghan R (2010) Multidrug efflux pumps: drug binding - gates or cavity? FEBS Journal 277: 530-539.
26. Borst P, Elferink RO (2002) Mammalian ABC transporters in health and disease. Annu Rev Biochem 71: 537-592.
27. Borst P, Jonkers J, Rottenberg S (2007) What makes tumors multidrug resistant? Cell Cycle 6: 2782-2787.
28. Dassa E (1993) Sequence-function relationships in MalG, an inner membrane protein from the maltose transport system in Escherichia coli. Mol Microbiol 7: 39-47.
29. Mourez M, Hofnung M, Dassa E (1997) Subunit interactions in ABC transporters: a conserved sequence in hydrophobic membrane proteins of periplasmic permeases defines an important site of interaction with the ATPase subunits. EMBO J 16: 3066-3077.
30. Biemans-Oldehinkel E, Doeven MK, Poolman B (2006) ABC transporter architecture and regulatory roles of accessory domains. FEBS Lett 580: 1023-1035.
31. Koch J, Guntrum R, Heintke S, Kyritsis C, Tampe R (2004) Functional dissection of the transmembrane domains of the transporter associated with antigen processing (TAP). J Biol Chem 279: 10142-10147.
32. Koch J, Guntrum R, Tampe R (2005) Exploring the minimal functional unit of the transporter associated with antigen processing. FEBS Lett 579: 4413-4416.
33. Schmitt L, Tampe R (2002) Structure and mechanism of ABC transporters. Curr Opin Struct Biol 12: 754-760.
34. Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATPrequiring enzymes and a common nucleotide binding fold. Embo J 1: 945-951.
35. Zaitseva J, Jenewein S, Jumpertz T, Holland IB, Schmitt L (2005) H662 is the linchpin of ATP hydrolysis in the nucleotide-binding domain of the ABC transporter HlyB. Embo J 24: 1901-1910.
36. Vetter IR, Wittinghofer A (1999) Nucleoside triphosphate-binding proteins: different scaffolds to achieve phosphoryl transfer. Q Rev Biophys 32: 1-56.
37. Zaitseva J, Jenewein S, Oswald C, Jumpertz T, Holland IB, et al. (2005) A molecular understanding of the catalytic cycle of the nucleotide-binding domain of the ABC transporter HlyB. Biochem Soc Trans 33: 990-995.
38. Zaitseva J, Oswald C, Jumpertz T, Jenewein S, Wiedenmann A, et al. (2006) A structural analysis of asymmetry required for catalytic activity of an ABC-ATPase domain dimer. EMBO J 25: 3432-3443.
39. Higgins CF, Linton KJ (2004) The ATP switch model for ABC transporters. Nat Struct Mol Biol 11: 918-926.
40. Hopfner KP, Karcher A, Shin DS, Craig L, Arthur LM, et al. (2000) Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily. Cell 101: 789-800.
41. Locher KP, Lee AT, Rees DC (2002) The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296: 1091-1098.
42. Fetsch EE, Davidson AL (2002) Vanadate-catalyzed photocleavage of the signature motif of an ATP-binding cassette (ABC) transporter. Proc Natl Acad Sci U S A 99: 9685-9690.
43. Abrahams JP, Leslie AG, Lutter R, Walker JE (1994) Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature 370: 621-628.
44. Story RM, Steitz TA (1992) Structure of the recA protein-ADP complex. Nature 355: 374-376.
45. Chen J, Lu G, Lin J, Davidson AL, Quiocho FA (2003) A tweezers-like motion of the ATP-binding cassette dimer in an ABC transport cycle. Mol Cell 12: 651-661.
46. Hung LW, Wang IX, Nikaido K, Liu PQ, Ames GF, et al. (1998) Crystal structure of the ATP-binding subunit of an ABC transporter. Nature 396: 703-707.
47. Verdon G, Albers SV, Dijkstra BW, Driessen AJ, Thunnissen AM (2003) Crystal structures of the ATPase subunit of the glucose ABC transporter from Sulfolobus solfataricus: nucleotide-free and nucleotide-bound conformations. J Mol Biol 330: 343-358.
48. Smith PC, Karpowich N, Millen L, Moody JE, Rosen J, et al. (2002) ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer. Mol Cell 10: 139-149.
49. Gaudet R, Wiley DC (2001) Structure of the ABC ATPase domain of human TAP1, the transporter associated with antigen processing. Embo J 20: 4964-4972.
50. Karpowich N, Martsinkevich O, Millen L, Yuan YR, Dai PL, et al. (2001) Crystal structures of the MJ1267 ATP binding cassette reveal an induced-fit effect at the ATPase active site of an ABC transporter. Structure (Camb) 9: 571-586.
51. Yuan YR, Blecker S, Martsinkevich O, Millen L, Thomas PJ, et al. (2001) The crystal structure of the MJ0796 ATP-binding cassette. Implications for the structural consequences of ATP hydrolysis in the active site of an ABC transporter. J Biol Chem 276: 32313-32321.
52. Lewis HA, Buchanan SG, Burley SK, Conners K, Dickey M, et al. (2004) Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator. Embo J 23: 282-293.
53. Ward A, Reyes CL, Yu J, Roth CB, Chang G (2007) Flexibility in the ABC transporter MsbA: Alternating access with a twist. Proc Natl Acad Sci U S A 104: 1900519010.
54. Dawson RJ, Locher KP (2006) Structure of a bacterial multidrug ABC transporter. Nature 443: 180-185.
55. Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, et al. (2009) Structure of Pglycoprotein reveals a molecular basis for poly-specific drug binding. Science 323: 1718-1722.
56. Ehrmann M, Ehrle R, Hofmann E, Boos W, Schlosser A (1998) The ABC maltose transporter. Mol Microbiol 29: 685-694.
57. Benabdelhak H, Kiontke S, Horn C, Ernst R, Blight MA, et al. (2003) A specific interaction between the NBD of the ABC-transporter HlyB and a C-terminal fragment of its transport substrate haemolysin A. J Mol Biol 327: 1169-1179.
58. Jardetzky 0 (1966) Simple allosteric model for membrane pumps. Nature 211: 969970.
59. Janas E, Hofacker M, Chen M, Gompf S, van der Does C, et al. (2003) The ATP hydrolysis cycle of the nucleotide-binding domain of the mitochondrial ATPbinding cassette transporter Md11p. J Biol Chem 278: 26862-26869.
60. Sauna ZE, Ambudkar SV (2001) Characterization of the catalytic cycle of ATP hydrolysis by human P-glycoprotein. The two ATP hydrolysis events in a single
catalytic cycle are kinetically similar but affect different functional outcomes. J Biol Chem 276: 11653-11661.
61. Nikaido K, Liu PQ, Ames GF (1997) Purification and characterization of HisP, the ATP-binding subunit of a traffic ATPase (ABC transporter), the histidine permease of Salmonella typhimurium. Solubility, dimerization, and ATPase activity. J Biol Chem 272: 27745-27752.
62. Zaitseva J, Jenewein S, Wiedenmann A, Benabdelhak H, Holland IB, et al. (2005) Functional characterization and ATP-induced dimerization of the isolated ABCdomain of the haemolysin B transporter. Biochemistry 44: 9680-9690.
63. Liu CE, Liu PQ, Ames GF (1997) Characterization of the adenosine triphosphatase activity of the periplasmic histidine permease, a traffic ATPase (ABC transporter). J Biol Chem 272: 21883-21891.
64. Liu PQ, Ames GF (1998) In vitro disassembly and reassembly of an ABC transporter, the histidine permease. Proc Natl Acad Sci U S A 95: 3495-3500.
65. Pinkett HW, Lee AT, Lum P, Locher KP, Rees DC (2007) An inward-facing conformation of a putative metal-chelate-type ABC transporter. Science 315: 373377.
66. Khare D, Oldham ML, Orelle C, Davidson AL, Chen J (2030) Alternating Access in Maltose Transporter Mediated by Rigid-Body Rotations. Molecular Cell 33: 528536.
67. Hollenstein K, Dawson RJP, Locher KP (2007) Structure and mechanism of ABC transporter proteins. Curr Opin Struct Biol 17: 412-418.
68. Dawson RJ, Locher KP (2007) Structure of the multidrug ABC transporter Sav1866 from Staphylococcus aureus in complex with AMP-PNP. FEBS Lett 581: 935-938.
69. Scriver CR (1989) The Metabolic basis of inherited disease. New York: McGraw-Hill Information Services Co., Health Professions Division. 2 v. (xxviii, 3006, 3085 p.) p.
70. Bodzioch M, Orso E, Klucken J, Langmann T, Bottcher A, et al. (1999) The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet 22: 347-351.
71. Brooks-Wilson A, Marcil M, Clee SM, Zhang LH, Roomp K, et al. (1999) Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet 22: 336-345.
72. Marcil M, Brooks-Wilson A, Clee SM, Roomp K, Zhang LH, et al. (1999) Mutations in the ABC1 gene in familial HDL deficiency with defective cholesterol efflux. Lancet 354: 1341-1346.
73. Rust S, Rosier M, Funke H, Real J, Amoura Z, et al. (1999) Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat Genet 22: 352-355.
74. Allikmets R (1997) A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet 17: 122.
75. Allikmets R, Shroyer NF, Singh N, Seddon JM, Lewis RA, et al. (1997) Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration. Science 277: 1805-1807.
76. Martinez-Mir A, Paloma E, Allikmets R, Ayuso C, del Rio T, et al. (1998) Retinitis pigmentosa caused by a homozygous mutation in the Stargardt disease gene ABCR. Nat Genet 18: 11-12.
77. Didier AD, Loor F (1995) Decreased biotolerability for ivermectin and cyclosporin A in mice exposed to potent P-glycoprotein inhibitors. Int J Cancer 63: 263-267.
78. Didier A, Loor F (1996) The abamectin derivative ivermectin is a potent Pglycoprotein inhibitor. Anticancer Drugs 7: 745-751.
79. Pouliot JF, L'Heureux F, Liu Z, Prichard RK, Georges E (1997) Reversal of P-glycoprotein-associated multidrug resistance by ivermectin. Biochem Pharmacol 53: 17-25.
80. Mealey KL, Northrup NC, Bentjen SA (2003) Increased toxicity of P-glycoproteinsubstrate chemotherapeutic agents in a dog with the MDR1 deletion mutation associated with ivermectin sensitivity. J Am Vet Med Assoc 223: 1453-1455, 1434.
81. Roulet A, Puel O, Gesta S, Lepage JF, Drag M, et al. (2003) MDR1-deficient genotype in Collie dogs hypersensitive to the P-glycoprotein substrate ivermectin. Eur J Pharmacol 460: 85-91.
82. Oude Elferink RP, Groen AK (1995) The role of mdr2 P-glycoprotein in biliary lipid secretion. Cross-talk between cancer research and biliary physiology. J Hepatol 23: 617-625.
83. Ruetz S, Gros P (1994) Phosphatidylcholine translocase: a physiological role for the mdr2 gene. Cell 77: 1071-1081.
84. Noe J, Stieger B, Meier PJ (2002) Functional expression of the canalicular bile salt export pump of human liver. Gastroenterology 123: 1659-1666.
85. Zutz A, Gompf S, Schagger H, Tampe R (2009) Mitochondrial ABC proteins in health and disease. Biochim Biophys Acta 1787: 681-690.
86. Ballatori N, Hammond CL, Cunningham JB, Krance SM, Marchan R (2005) Molecular mechanisms of reduced glutathione transport: role of the MRP/CFTR/ABCC and OATP/SLC21A families of membrane proteins. Toxicol Appl Pharmacol 204: 238255.
87. Quinton PM (1999) Physiological basis of cystic fibrosis: a historical perspective. Physiol Rev 79: S3-S22.
88. Inagaki N, Gonoi T, Clement JPt, Namba N, Inazawa J, et al. (1995) Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science 270: 1166-1170.
89. Borst P, Evers R, Kool M, Wijnholds J (2000) A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst 92: 1295-1302.
90. Bakos E, Evers R, Calenda G, Tusnady GE, Szakacs G, et al. (2000) Characterization of the amino-terminal regions in the human multidrug resistance protein (MRP1). J Cell Sci 113 Pt 24: 4451-4461.
91. Shani N, Valle D (1998) Peroxisomal ABC transporters. Methods Enzymol 292: 753776.
92. Bisbal C, Martinand C, Silhol M, Lebleu B, Salehzada T (1995) Cloning and characterization of a RNAse L inhibitor. A new component of the interferonregulated 2-5A pathway. J Biol Chem 270: 13308-13317.
93. Zimmerman C, Klein KC, Kiser PK, Singh AR, Firestein BL, et al. (2002) Identification of a host protein essential for assembly of immature HIV-1 capsids. Nature 415: 88-92.
94. Marton MJ, Vazquez de Aldana CR, Qiu H, Chakraburtty K, Hinnebusch AG (1997) Evidence that GCN1 and GCN20, translational regulators of GCN4, function on elongating ribosomes in activation of eIF2alpha kinase GCN2. Mol Cell Biol 17: 4474-4489.
95. Tyzack JK, Wang X, Belsham GJ, Proud CG (2000) ABC50 interacts with eukaryotic initiation factor 2 and associates with the ribosome in an ATP-dependent manner. J Biol Chem 275: 34131-34139.
96. Chen H, Rossier C, Lalioti MD, Lynn A, Chakravarti A, et al. (1996) Cloning of the cDNA for a human homologue of the Drosophila white gene and mapping to chromosome 21q22.3. Am J Hum Genet 59: 66-75.
97. Klucken J, Buchler C, Orso E, Kaminski WE, Porsch-Ozcurumez M, et al. (2000) ABCG1 (ABC8), the human homolog of the Drosophila white gene, is a regulator of macrophage cholesterol and phospholipid transport. Proc Natl Acad Sci U S A 97: 817-822.
98. Sarkadi B, Ozvegy-Laczka C, Nemet K, Varadi A (2004) ABCG2 -- a transporter for all seasons. FEBS Lett 567: 116-120.
99. Spies T, DeMars R (1991) Restored expression of major histocompatibility class I molecules by gene transfer of a putative peptide transporter. Nature 351: 323324.
100. Spies T, Bresnahan M, Bahram S, Arnold D, Blanck G, et al. (1990) A gene in the human major histocompatibility complex class II region controlling the class I antigen presentation pathway. Nature 348: 744-747.
101. Trowsdale J, Hanson I, Mockridge I, Beck S, Townsend A, et al. (1990) Sequences encoded in the class II region of the MHC related to the 'ABC' superfamily of transporters. Nature 348: 741-744.
102. Deverson EV, Gow IR, Coadwell WJ, Monaco JJ, Butcher GW, et al. (1990) MHC class II region encoding proteins related to the multidrug resistance family of transmembrane transporters. Nature 348: 738-741.
103. Powis SJ, Townsend AR, Deverson EV, Bastin J, Butcher GW, et al. (1991) Restoration of antigen presentation to the mutant cell line RMA-S by an MHClinked transporter. Nature 354: 528-531.
104. van der Bliek AM, Kooiman PM, Schneider C, Borst P (1988) Sequence of mdr3 cDNA encoding a human P-glycoprotein. Gene 71: 401-411.
105. Schinkel AH, Roelofs EM, Borst P (1991) Characterization of the human MDR3 Pglycoprotein and its recognition by P-glycoprotein-specific monoclonal antibodies. Cancer Res 51: 2628-2635.
106. Elferink RP, Tytgat GN, Groen AK (1997) Hepatic canalicular membrane 1: The role of mdr2 P-glycoprotein in hepatobiliary lipid transport. FASEB J 11: 19-28.
107. Allikmets R, Raskind WH, Hutchinson A, Schueck ND, Dean M, et al. (1999) Mutation of a putative mitochondrial iron transporter gene (ABC7) in X-linked sideroblastic anemia and ataxia (XLSA/A). Hum Mol Genet 8: 743-749.
108. Bekri S, Kispal G, Lange H, Fitzsimons E, Tolmie J, et al. (2000) Human ABC7 transporter: gene structure and mutation causing X-linked sideroblastic anemia with ataxia with disruption of cytosolic iron-sulfur protein maturation. Blood 96: 3256-3264.
109. Thompson R, Strautnieks S (2001) BSEP: function and role in progressive familial intrahepatic cholestasis. Semin Liver Dis 21: 545-550.
110. Keitel V, Burdelski M, Warskulat U, Kuhlkamp T, Keppler D, et al. (2005) Expression and localization of hepatobiliary transport proteins in progressive familial intrahepatic cholestasis. Hepatology 41: 1160-1172.
111. Dubin IN, Johnson FB (1954) Chronic idiopathic jaundice with unidentified pigment in liver cells; a new clinicopathologic entity with a report of 12 cases. Medicine (Baltimore) 33: 155-197.
112. Wada M, Toh S, Taniguchi K, Nakamura T, Uchiumi T, et al. (1998) Mutations in the canilicular multispecific organic anion transporter (cMOAT) gene, a novel ABC transporter, in patients with hyperbilirubinemia II/Dubin-Johnson syndrome. Hum Mol Genet 7: 203-207.
113. Ringpfeil F, Lebwohl MG, Christiano AM, Uitto J (2000) Pseudoxanthoma elasticum: mutations in the MRP6 gene encoding a transmembrane ATP-binding cassette (ABC) transporter. Proc Natl Acad Sci U S A 97: 6001-6006.
114. Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, et al. (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245: 1066-1073.
115. Kerem B, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, et al. (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245: 10731080.
116. Rommens JM, Iannuzzi MC, Kerem B, Drumm ML, Melmer G, et al. (1989) Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245: 1059-1065.
117. Thomas PM, Cote GJ, Wohllk N, Haddad B, Mathew PM, et al. (1995) Mutations in the sulfonylurea receptor gene in familial persistent hyperinsulinemic hypoglycemia of infancy. Science 268: 426-429.
118. Mosser J, Douar AM, Sarde CO, Kioschis P, Feil R, et al. (1993) Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters. Nature 361: 726-730.
119. Berge KE, Tian H, Graf GA, Yu L, Grishin NV, et al. (2000) Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 290: 1771-1775.
120. Lee MH, Lu K, Hazard S, Yu H, Shulenin S, et al. (2001) Identification of a gene, ABCG5, important in the regulation of dietary cholesterol absorption. Nat Genet 27: 79-83.
121. Lu K, Lee MH, Hazard S, Brooks-Wilson A, Hidaka H, et al. (2001) Two genes that map to the STSL locus cause sitosterolemia: genomic structure and spectrum of mutations involving sterolin-1 and sterolin-2, encoded by ABCG5 and ABCG8, respectively. Am J Hum Genet 69: 278-290.
122. Haussinger D, Kubitz R, Reinehr R, Bode JG, Schliess F (2004) Molecular aspects of medicine: from experimental to clinical hepatology. Mol Aspects Med 25: 221360.
123. Chandra P, Brouwer KL (2004) The complexities of hepatic drug transport: current knowledge and emerging concepts. Pharm Res 21: 719-735.
124. Kullak-Ublick GA, Stieger B, Meier PJ (2004) Enterohepatic bile salt transporters in normal physiology and liver disease. Gastroenterology 126: 322-342.
125. Leslie EM, Deeley RG, Cole SP (2005) Multidrug resistance proteins: role of Pglycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol Appl Pharmacol 204: 216-237.
126. Faber KN, Muller M, Jansen PL (2003) Drug transport proteins in the liver. Adv Drug Deliv Rev 55: 107-124.
127. Meier PJ, Eckhardt U, Schroeder A, Hagenbuch B, Stieger B (1997) Substrate specificity of sinusoidal bile acid and organic anion uptake systems in rat and human liver. Hepatology 26: 1667-1677.
128. Hagenbuch B, Stieger B, Foguet M, Lubbert H, Meier PJ (1991) Functional expression cloning and characterization of the hepatocyte Na+/bile acid cotransport system. Proc Natl Acad Sci U S A 88: 10629-10633.
129. Konig J, Nies AT, Cui Y, Leier I, Keppler D (1999) Conjugate export pumps of the multidrug resistance protein (MRP) family: localization, substrate specificity, and MRP2-mediated drug resistance. Biochim Biophys Acta 1461: 377-394.
130. Keppler D, Cui Y, Konig J, Leier I, Nies A (1999) Export pumps for anionic conjugates encoded by MRP genes. Adv Enzyme Regul 39: 237-246.
131. Arrese M, Ananthanarayanan M (2004) The bile salt export pump: molecular properties, function and regulation. Pflugers Arch 449: 123-131.
132. Micrograph LTS (2006) Used under the GNU Free Documentation License. Department of Histology, Jagiellonian University Medical College, Krakow, Poland.
133. Cartoon of Liver Cell Ultrastructure. Downloaded from www.irishhealth.com on 11.01.10.
134. Childs S, Yeh RL, Georges E, Ling V (1995) Identification of a sister gene to Pglycoprotein. Cancer Res 55: 2029-2034.
135. Gerloff T, Stieger B, Hagenbuch B, Madon J, Landmann L, et al. (1998) The sister of P-glycoprotein represents the canalicular bile salt export pump of mammalian liver. J Biol Chem 273: 10046-10050.
136. Meier PJ, Stieger B (2002) Bile salt transporters. Annu Rev Physiol 64: 635-661.
137. Aleksandrov L, Aleksandrov AA, Chang XB, Riordan JR (2002) The First Nucleotide Binding Domain of Cystic Fibrosis Transmembrane Conductance Regulator Is a Site of Stable Nucleotide Interaction, whereas the Second Is a Site of Rapid Turnover. J Biol Chem 277: 15419-15425.
138. Aleksandrov L, Mengos A, Chang X, Aleksandrov A, Riordan JR (2001) Differential interactions of nucleotides at the two nucleotide binding domains of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 276: 12918-12923.
139. Chen M, Abele R, Tampe R (2004) Functional non-equivalence of ATP-binding cassette signature motifs in the transporter associated with antigen processing (TAP). J Biol Chem 279: 46073-46081.
140. Fickert P, Zollner G, Fuchsbichler A, Stumptner C, Pojer C, et al. (2001) Effects of ursodeoxycholic and cholic acid feeding on hepatocellular transporter expression in mouse liver. Gastroenterology 121: 170-183.
141. Karpen SJ (2002) Nuclear receptor regulation of hepatic function. J Hepatol 36: 832-850.
142. Schmitt M, Kubitz R, Lizun S, Wettstein M, Haussinger D (2001) Regulation of the dynamic localization of the rat Bsep gene-encoded bile salt export pump by anisoosmolarity. Hepatology 33: 509-518.
143. Kipp H, Arias IM (2002) Trafficking of canalicular ABC transporters in hepatocytes. Annu Rev Physiol 64: 595-608.
144. Kubitz R, Sutfels G, Kuhlkamp T, Kolling R, Haussinger D (2004) Trafficking of the bile salt export pump from the Golgi to the canalicular membrane is regulated by the p38 MAP kinase. Gastroenterology 126: 541-553.
145. Noe J, Hagenbuch B, Meier PJ, St-Pierre MV (2001) Characterization of the mouse bile salt export pump overexpressed in the baculovirus system. Hepatology 33: 1223-1231.
146. Pauli-Magnus C, Kerb R, Fattinger K, Lang T, Anwald B, et al. (2004) BSEP and MDR3 haplotype structure in healthy Caucasians, primary biliary cirrhosis and primary sclerosing cholangitis. Hepatology 39: 779-791.
147. Smith AJ, de Vree JM, Ottenhoff R, Oude Elferink RP, Schinkel AH, et al. (1998) Hepatocyte-specific expression of the human MDR3 P-glycoprotein gene restores the biliary phosphatidylcholine excretion absent in Mdr2 (-/-) mice. Hepatology 28: 530-536.
148. Crawford AR, Smith AJ, Hatch VC, Oude Elferink RP, Borst P, et al. (1997) Hepatic secretion of phospholipid vesicles in the mouse critically depends on mdr2 or

MDR3 P-glycoprotein expression. Visualization by electron microscopy. J Clin Invest 100: 2562-2567.
149. Degiorgio D, Colombo C, Seia M, Porcaro L, Costantino L, et al. (2007) Molecular characterization and structural implications of 25 new ABCB4 mutations in progressive familial intrahepatic cholestasis type 3 (PFIC3). Eur J Hum Genet 15: 1230-1238.
150. Mbongo-Kama E, Harnois F, Mennecier D, Leclercq E, Burnat P, et al. (2007) MDR3 mutations associated with intrahepatic and gallbladder cholesterol cholelithiasis: an update. Ann Hepatol 6: 143-149.
151. Floreani A, Carderi I, Paternoster D, Soardo G, Azzaroli F, et al. (2008) Hepatobiliary phospholipid transporter ABCB4, MDR3 gene variants in a large cohort of Italian women with intrahepatic cholestasis of pregnancy. Dig Liver Dis 40: 366-370.
152. Oude Elferink RP, Bakker CT, Roelofsen H, Middelkoop E, Ottenhoff R, et al. (1993) Accumulation of organic anion in intracellular vesicles of cultured rat hepatocytes is mediated by the canalicular multispecific organic anion transporter. Hepatology 17: 434-444.
153. Benet LZ, Izumi T, Zhang Y, Silverman JA, Wacher VJ (1999) Intestinal MDR transport proteins and P-450 enzymes as barriers to oral drug delivery. J Control Release 62: 25-31.
154. Cui Y, Konig J, Buchholz JK, Spring H, Leier I, et al. (1999) Drug resistance and ATPdependent conjugate transport mediated by the apical multidrug resistance protein, MRP2, permanently expressed in human and canine cells. Mol Pharmacol 55: 929-937.
155. Nies AT, Keppler D (2007) The apical conjugate efflux pump ABCC2 (MRP2). Pflugers Arch 453: 643-659.
156. Fernandez SB, Hollo Z, Kern A, Bakos E, Fischer PA, et al. (2002) Role of the Nterminal transmembrane region of the multidrug resistance protein MRP2 in routing to the apical membrane in MDCKII cells. J Biol Chem 277: 31048-31055.
157. Gao M, Yamazaki M, Loe DW, Westlake CJ, Grant CE, et al. (1998) Multidrug resistance protein. Identification of regions required for active transport of leukotriene C4. J Biol Chem 273: 10733-10740.
158. Bakos E, Hegedus T, Hollo Z, Welker E, Tusnady GE, et al. (1996) Membrane topology and glycosylation of the human multidrug resistance-associated protein. J Biol Chem 271: 12322-12326.
159. Hirohashi T, Suzuki H, Ito K, Ogawa K, Kume K, et al. (1998) Hepatic expression of multidrug resistance-associated protein-like proteins maintained in eisai hyperbilirubinemic rats. Mol Pharmacol 53: 1068-1075.
160. Sprinz H, Nelson RS (1954) Persistent non-hemolytic hyperbilirubinemia associated with lipochrome-like pigment in liver cells: report of four cases. Ann Intern Med 41: 952-962.
161. Jonker JW, Stedman CAM, Liddle C, Downes M (2009) Hepatobiliary ABC transporters: physiology, regulation and implications for disease. Front Biosci 14: 4904-4920.
162. Yu L, Li-Hawkins J, Hammer RE, Berge KE, Horton JD, et al. (2002) Overexpression of ABCG5 and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol. J Clin Invest 110: 671-680.
163. Graf GA, Li WP, Gerard RD, Gelissen I, White A, et al. (2002) Coexpression of ATPbinding cassette proteins ABCG5 and ABCG8 permits their transport to the apical surface. J Clin Invest 110: 659-669.
164. Bull LN, van Eijk MJ, Pawlikowska L, DeYoung JA, Juijn JA, et al. (1998) A gene encoding a P-type ATPase mutated in two forms of hereditary cholestasis. Nat Genet 18: 219-224.
165. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387: 569572.
166. Brown DA, London E (2000) Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 275: 17221-17224.
167. Meder D, Moreno MJ, Verkade P, Vaz WLC, Simons K (2006) Phase coexistence and connectivity in the apical membrane of polarized epithelial cells. Proc Natl Acad Sci USA 103: 329-334.
168. Dos Santos SM, Weber C-C, Franke C, Müller WE, Eckert GP (2007) Cholesterol: Coupling between membrane microenvironment and ABC transporter activity. Biochem Biophys Res Commun 354: 216-221.
169. Klappe K, Hummel I, Hoekstra D, Kok JW (2009) Lipid dependence of ABC transporter localization and function. Chem Phys Lipids 161: 57-64.
170. Paulusma CC, Groen A, Kunne C, Ho-Mok KS, Spijkerboer AL, et al. (2006) Atp8b1 deficiency in mice reduces resistance of the canalicular membrane to hydrophobic bile salts and impairs bile salt transport. Hepatology 44: 195-204.
171. Oude Elferink RPJ, Paulusma CC (2007) Function and pathophysiological importance of ABCB4 (MDR3 P-glycoprotein). Pflugers Arch 453: 601-610.
172. Ortiz DF, St Pierre MV, Abdulmessih A, Arias IM (1997) A yeast ATP-binding cassette-type protein mediating ATP-dependent bile acid transport. J Biol Chem 272: 15358-15365.
173. Wagner S, Bader ML, Drew D, de Gier J-W (2006) Rationalizing membrane protein overexpression. Trends Biotechnol 24: 364-371.
174. Noé J, Stieger B, Meier PJ (2002) Functional expression of the canalicular bile salt export pump of human liver. Gastroenterology 123: 1659-1666.
175. Smith AJ, van Helvoort A, van Meer G, Szabo K, Welker E, et al. (2000) MDR3 Pglycoprotein, a phosphatidylcholine translocase, transports several cytotoxic drugs and directly interacts with drugs as judged by interference with nucleotide trapping. J Biol Chem 275: 23530-23539.
176. Hagmann W, Nies AT, Konig J, Frey M, Zentgraf H, et al. (1999) Purification of the human apical conjugate export pump MRP2 reconstitution and functional characterization as substrate-stimulated ATPase. Eur J Biochem 265: 281-289.
177. Hagmann W, Schubert J, König J, Keppler D (2002) Reconstitution of transportactive multidrug resistance protein 2 (MRP2; ABCC2) in proteoliposomes. Biol Chem 383: 1001-1009.
178. Mus-Veteau I (2010) Heterologous expression of membrane proteins for structural analysis. Methods Mol Biol 601: 1-16.
179. Evans GL, Ni B, Hrycyna CA, Chen D, Ambudkar SV, et al. (1995) Heterologous expression systems for P-glycoprotein: E. coli, yeast, and baculovirus. J Bioenerg Biomembr 27: 43-52.
180. Dean M, Hamon Y, Chimini G (2001) The human ATP-binding cassette (ABC) transporter superfamily. J Lipid Res 42: 1007-1017.
181. Kuchler K, Thorner J (1992) Functional expression of human mdr1 in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 89: 2302-2306.
182. Figler RA, Omote H, Nakamoto RK, Al-Shawi MK (2000) Use of chemical chaperones in the yeast Saccharomyces cerevisiae to enhance heterologous membrane protein expression: high-yield expression and purification of human P glycoprotein. Arch Biochem Biophys 376: 34-46.
183. Lee SH, Altenberg GA (2003) Transport of leukotriene C4 by a cysteine-less multidrug resistance protein 1 (MRP1). Biochem J 370: 357-360.
184. Lee SH, Altenberg GA (2003) Expression of functional multidrug-resistance protein 1 in Saccharomyces cerevisiae: effects of N - and C-terminal affinity tags. Biochem Biophys Res Commun 306: 644-649.
185. Bergman LW (2001) Growth and maintenance of yeast. Methods Mol Biol 177: 914.
186. Ernst R, Kueppers P, Klein CM, Schwarzmueller T, Kuchler K, et al. (2008) A mutation of the H-loop selectively affects rhodamine transport by the yeast multidrug ABC transporter Pdr5. Proc Natl Acad Sci USA 105: 5069-5074.
187. Ernst R, Klemm R, Schmitt L, Kuchler K (2005) Yeast ABC Transporters - Cellular Cleaning Pumps. Methods Enzymol.
188. Mamnun YM, Pandjaitan R, Mahe Y, Delahodde A, Kuchler K (2002) The yeast zinc finger regulators Pdr1p and Pdr3p control pleiotropic drug resistance (PDR) as homo- and heterodimers in vivo. Mol Microbiol 46: 1429-1440.
189. Rogers B, Decottignies A, Kolaczkowski M, Carvajal E, Balzi E, et al. (2001) The pleitropic drug ABC transporters from Saccharomyces cerevisiae. J Mol Microbiol Biotechnol 3: 207-214.
190. Wolfger H, Mamnun YM, Kuchler K (2001) Fungal ABC proteins: pleiotropic drug resistance, stress response and cellular detoxification. Res Microbiol 152: 375389.
191. Kueppers P (2010) Molekulare Analyse des pleiotropen ABC-Transporters Pdr5 aus S. cerevisiae. Duesseldorf: Heinrich Heine Universitaet Duesseldorf.
192. Decottignies A, Grant AM, Nichols JW, de Wet H, McIntosh DB, et al. (1998) ATPase and multidrug transport activities of the overexpressed yeast ABC protein Yor1p. J Biol Chem 273: 12612-12622.
193. Nakamura K, Niimi M, Niimi K, Holmes AR, Yates JE, et al. (2001) Functional expression of Candida albicans drug efflux pump Cdr1p in a Saccharomyces cerevisiae strain deficient in membrane transporters. Antimicrob Agents Chemother 45: 3366-3374.
194. Mahé Y, Lemoine Y, Kuchler K (1996) The ATP binding cassette transporters Pdr5 and Snq2 of Saccharomyces cerevisiae can mediate transport of steroids in vivo. J Biol Chem 271: 25167-25172.
195. Lerner-Marmarosh N, Gimi K, Urbatsch IL, Gros P, Senior AE (1999) Large scale purification of detergent-soluble P-glycoprotein from Pichia pastoris cells and characterization of nucleotide binding properties of wild-type, Walker A, and Walker B mutant proteins. J Biol Chem 274: 34711-34718.
196. Cai J, Daoud R, Georges E, Gros P (2001) Functional expression of multidrug resistance protein 1 in Pichia pastoris. Biochemistry 40: 8307-8316.
197. Wang Z, Stalcup LD, Harvey BJ, Weber J, Chloupkova M, et al. (2006) Purification and ATP Hydrolysis of the Putative Cholesterol Transporters ABCG5 and ABCG8 \dagger. Biochemistry 45: 9929-9939.
198. Johnson BJH, Lee J-Y, Pickert A, Urbatsch IL (2010) Bile acids stimulate ATP hydrolysis in the purified cholesterol transporter ABCG5/G8. Biochemistry 49: 3403-3411.
199. Chloupková M, Pickert A, Lee J-Y, Souza S, Trinh YT, et al. (2007) Expression of 25 human $A B C$ transporters in the yeast Pichia pastoris and characterization of the purified ABCC3 ATPase activity. Biochemistry 46: 7992-8003.
200. Cregg JM, Tolstorukov I, Kusari A, Sunga J, Madden K, et al. (2009) Expression in the yeast Pichia pastoris. Methods Enzymol 463: 169-189.
201. Bartosz G, Konig J, Keppler D, Hagmann W (1998) Human mast cells secreting leukotriene C4 express the MRP1 gene-encoded conjugate export pump. Biol Chem 379: 1121-1126.
202. Scheffer GL, Kool M, Heijn M, de Haas M, Pijnenborg AC, et al. (2000) Specific detection of multidrug resistance proteins MRP1, MRP2, MRP3, MRP5, and MDR3 P-glycoprotein with a panel of monoclonal antibodies. Cancer Res 60: 5269-5277.
203. Keitel V, Burdelski M, Warskulat U, Kühlkamp T, Keppler D, et al. (2005) Expression and localization of hepatobiliary transport proteins in progressive familial intrahepatic cholestasis. Hepatology 41: 1160-1172.
204. Egner R, Mahé Y, Pandjaitan R, Kuchler K (1995) Endocytosis and vacuolar degradation of the plasma membrane-localized Pdr5 ATP-binding cassette multidrug transporter in Saccharomyces cerevisiae. Mol Cell Biol 15: 5879-5887.
205. Ernst R (2007) Molekulare Analyse von ABC-Transportern am Beispiel von Pdr5p aus S. cerevisiae und der isolierten NBD des humanen TAP1. Duesseldorf: Heinrich Heine Universitaet Duesseldorf.
206. Cui Y, König J, Buchholz JK, Spring H, Leier I, et al. (1999) Drug resistance and ATPdependent conjugate transport mediated by the apical multidrug resistance protein, MRP2, permanently expressed in human and canine cells. Mol Pharmacol 55: 929-937.
207. Byrne JA, Strautnieks SS, Mieli-Vergani G, Higgins CF, Linton KJ, et al. (2002) The human bile salt export pump: characterization of substrate specificity and identification of inhibitors. Gastroenterology 123: 1649-1658.
208. Mumberg D, Müller R, Funk M (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156: 119-122.
209. Mumberg D, Müller R, Funk M (1994) Regulatable promoters of Saccharomyces cerevisiae: comparison of transcriptional activity and their use for heterologous expression. Nucleic Acids Res 22: 5767-5768.
210. Keitel V, Burdelski M, Vojnisek Z, Schmitt L, Häussinger D, et al. (2009) De novo bile salt transporter antibodies as a possible cause of recurrent graft failure after liver transplantation: A novel mechanism of cholestasis. Hepatology 50: 510-517.
211. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166: 557-580.
212. Singh MV, Weil PA (2002) A method for plasmid purification directly from yeast. Anal Biochem 307: 13-17.
213. Lorenz RT, Parks LW (1990) Effects of lovastatin (mevinolin) on sterol levels and on activity of azoles in Saccharomyces cerevisiae. Antimicrob Agents Chemother 34: 1660-1665.
214. Mamnun YM, Schüller C, Kuchler K (2004) Expression regulation of the yeast PDR5 ATP-binding cassette (ABC) transporter suggests a role in cellular detoxification during the exponential growth phase. FEBS Lett 559: 111-117.
215. Serrano R (1988) H+-ATPase from plasma membranes of Saccharomyces cerevisiae and Avena sativa roots: purification and reconstitution. Methods Enzymol 157: 533-544.
216. Goffeau A, Dufour JP (1988) Plasma membrane ATPase from the yeast Saccharomyces cerevisiae. Methods Enzymol 157: 528-533.
217. Dufour JP, Amory A, Goffeau A (1988) Plasma membrane ATPase from the yeast Schizosaccharomyces pombe. Methods Enzymol 157: 513-528.
218. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254.
219. Godiska R, Mead D, Dhodda V, Wu C, Hochstein R, et al. (2010) Linear plasmid vector for cloning of repetitive or unstable sequences in Escherichia coli. Nucleic Acids Res 38: e88.
220. Falster DS, Nakken S, Bergem-Ohr M, Rodland EA, Breivik J (2010) Unstable DNA repair genes shaped by their own sequence modifying phenotypes. J Mol Evol 70: 266-274.
221. Vu K, Bautos J, Hong M-P, Gelli A (2009) The functional expression of toxic genes: Lessons learned from molecular cloning of CCH1, a high-affinity Ca2+ channel. Anal Biochem 393: 234-241.
222. Byrne JA, Strautnieks SS, Ihrke G, Pagani F, Knisely AS, et al. (2009) Missense mutations and single nucleotide polymorphisms in ABCB11 impair bile salt export pump processing and function or disrupt pre-messenger RNA splicing. Hepatology 49: 553-567.
223. Wang G, Christensen LA, Vasquez KM (2006) Z-DNA-forming sequences generate large-scale deletions in mammalian cells. Proc Natl Acad Sci U S A 103: 26772682.
224. Cheng SH, Gregory RJ, Marshall J, Paul S, Souza DW, et al. (1990) Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63: 827-834.
225. Kielland-Brandt MCW, B.; Holmberg, S.; Litske Petersen J. G.; Nilsson-Tillgren T. (1980) Genetic Evidence for Nuclear Location of 2-Micron DNA in Yeast. Carlsberg Res Commun 45: 119-124.
226. Gerbaud CG, M. (1980) 2 um Plasmid Copy Number in Different Yeast Strains and Repartition of Endogenous and 2 um Chimeric Plasmids in Transformed Strains. Current Genetics 1: 219-228.
227. Qiang BQ, Schildkraut I (1984) A type II restriction endonuclease with an eight nucleotide specificity from Streptomyces fimbriatus. Nucleic Acids Res 12: 45074516.
228. Wentzell LM, Nobbs TJ, Halford SE (1995) The Sfil restriction endonuclease makes a four-strand DNA break at two copies of its recognition sequence. J Mol Biol 248: 581-595.
229. Sambrook J, Russell DW (2001) Molecular cloning : a laboratory manual. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press.
230. Keitel V, Kartenbeck J, Nies AT, Spring H, Brom M, et al. (2000) Impaired protein maturation of the conjugate export pump multidrug resistance protein 2 as a consequence of a deletion mutation in Dubin-Johnson syndrome. Hepatology 32: 1317-1328.
231. Beck WT, Mueller TJ, Tanzer LR (1979) Altered surface membrane glycoproteins in Vinca alkaloid-resistant human leukemic lymphoblasts. Cancer Res 39: 20702076.
232. Kartner N, Evernden-Porelle D, Bradley G, Ling V (1985) Detection of Pglycoprotein in multidrug-resistant cell lines by monoclonal antibodies. Nature 316: 820-823.
233. Zhang G, Fedyunin I, Miekley O, Valleriani A, Moura A, et al. (2010) Global and local depletion of ternary complex limits translational elongation. Nucleic Acids Research 38: 4778-4787.
234. Sharp PM, Cowe E (1991) Synonymous codon usage in Saccharomyces cerevisiae. Yeast 7: 657-678.
235. Tao L, Jackson RE, Cheng Q (2005) Directed evolution of copy number of a broad host range plasmid for metabolic engineering. Metab Eng 7: 10-17.
236. Ma H, Kunes S, Schatz PJ, Botstein D (1987) Plasmid construction by homologous recombination in yeast. Gene 58: 201-216.
237. Gibson DG (2009) Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides. Nucleic Acids Res 37: 6984-6990.
238. Oldenburg KR, Vo KT, Michaelis S, Paddon C (1997) Recombination-mediated PCRdirected plasmid construction in vivo in yeast. Nucleic Acids Res 25: 451-452.
239. Jansen G, Wu C, Schade B, Thomas DY, Whiteway M (2005) Drag\&Drop cloning in yeast. Gene 344: 43-51.
240. Kubitz R, Keitel V, Scheuring S, Kohrer K, Haussinger D (2006) Benign recurrent intrahepatic cholestasis associated with mutations of the bile salt export pump. J Clin Gastroenterol 40: 171-175.
241. Pauli-Magnus C, Lang T, Meier Y, Zodan-Marin T, Jung D, et al. (2004) Sequence analysis of bile salt export pump (ABCB11) and multidrug resistance pglycoprotein 3 (ABCB4, MDR3) in patients with intrahepatic cholestasis of pregnancy. Pharmacogenetics 14: 91-102.
242. Brown CR, Hong-Brown LQ, Welch WJ (1997) Strategies for correcting the delta F508 CFTR protein-folding defect. J Bioenerg Biomembr 29: 491-502.
243. Welch WJ, Brown CR (1996) Influence of molecular and chemical chaperones on protein folding. Cell Stress Chaperones 1: 109-115.
244. Pomorski T, Lombardi R, Riezman H, Devaux PF, van Meer G, et al. (2003) Drs2prelated P-type ATPases Dnf1p and Dnf2p are required for phospholipid translocation across the yeast plasma membrane and serve a role in endocytosis. Mol Biol Cell 14: 1240-1254.
245. Raymond M, Gros P, Whiteway M, Thomas DY (1992) Functional complementation of yeast ste6 by a mammalian multidrug resistance mdr gene. Science 256: 232234.
246. Ruetz S, Raymond M, Gros P (1993) Functional expression of P-glycoprotein encoded by the mouse mdr3 gene in yeast cells. Proc Natl Acad Sci USA 90: 11588-11592.
247. Raymond M, Ruetz S, Thomas DY, Gros P (1994) Functional expression of Pglycoprotein in Saccharomyces cerevisiae confers cellular resistance to the immunosuppressive and antifungal agent FK520. Mol Cell Biol 14: 277-286.
248. Ruetz S, Brault M, Kast C, Hemenway C, Heitman J, et al. (1996) Functional expression of the multidrug resistance-associated protein in the yeast Saccharomyces cerevisiae. J Biol Chem 271: 4154-4160.
249. Mao Q, Scarborough GA (1997) Purification of functional human P-glycoprotein expressed in Saccharomyces cerevisiae. Biochim Biophys Acta 1327: 107-118.
250. Niimi M, Wada S-i, Tanabe K, Kaneko A, Takano Y, et al. (2005) Functional analysis of fungal drug efflux transporters by heterologous expression in Saccharomyces cerevisiae. Jpn J Infect Dis 58: 1-7.
251. Leonard PJ, Rathod PK, Golin J (1994) Loss of function mutation in the yeast multiple drug resistance gene PDR5 causes a reduction in chloramphenicol efflux. Antimicrob Agents Chemother 38: 2492-2494.
252. Kolaczkowski M, van der Rest M, Cybularz-Kolaczkowska A, Soumillion JP, Konings WN, et al. (1996) Anticancer drugs, ionophoric peptides, and steroids as substrates of the yeast multidrug transporter Pdr5p. J Biol Chem 271: 3154331548.
253. Saeki T, Shimabuku AM, Azuma Y, Shibano Y, Komano T, et al. (1991) Expression of human P-glycoprotein in yeast cells--effects of membrane component sterols on the activity of P-glycoprotein. Agric Biol Chem 55: 1859-1865.
254. Staatz CE, Goodman LK, Tett SE (2010) Effect of CYP3A and ABCB1 Single Nucleotide Polymorphisms on the Pharmacokinetics and Pharmacodynamics of Calcineurin Inhibitors: Part II. Clinical Pharmacokinetics 49: 207-221.
255. Saeki T, Ueda K, Tanigawara Y, Hori R, Komano T (1993) Human P-glycoprotein transports cyclosporin A and FK506. J Biol Chem 268: 6077-6080.
256. Breuder T, Hemenway CS, Movva NR, Cardenas ME, Heitman J (1994) Calcineurin is essential in cyclosporin A- and FK506-sensitive yeast strains. Proc Natl Acad Sci U S A 91: 5372-5376.
257. Kim RB (2002) Drugs as P-glycoprotein substrates, inhibitors, and inducers. Drug Metab Rev 34: 47-54.
258. Endres CJ, Hsiao P, Chung FS, Unadkat JD (2006) The role of transporters in drug interactions. Eur J Pharm Sci 27: 501-517.
259. Keesler GA, Casey WM, Parks LW (1992) Stimulation by heme of steryl ester synthase and aerobic sterol exclusion in the yeast Saccharomyces cerevisiae. Arch Biochem Biophys 296: 474-481.
260. Jumpertz T, Tschapek B, Infed N, Smits SH, Ernst R, et al. (2011) High-throughput evaluation of the critical micelle concentration of detergents. Anal Biochem 408: 64-70.
261. Seret A, Bahri M-A (2009) The CMC-like behaviour of bile salts as probed by photoexcited Rose Bengal. Colloids and Surfaces A: Physicochemical and Engineering Aspects 339: 153-158.
262. Istvan ES, Deisenhofer J (2001) Structural mechanism for statin inhibition of HMGCoA reductase. Science 292: 1160-1164.
263. Hirano M, Maeda K, Hayashi H, Kusuhara H, Sugiyama Y (2005) Bile salt export pump (BSEP/ABCB11) can transport a nonbile acid substrate, pravastatin. J Pharmacol Exp Ther 314: 876-882.
264. Sakaeda T, Takara K, Kakumoto M, Ohmoto N, Nakamura T, et al. (2002) Simvastatin and lovastatin, but not pravastatin, interact with MDR1. J Pharm Pharmacol 54: 419-423.
265. Zehnpfennig B, Urbatsch IL, Galla H-J (2009) Functional Reconstitution of Human ABCC3 into Proteoliposomes Reveals a Transport Mechanism with Positive Cooperativity. Biochemistry 48: 4423-4430.
266. Cregg JM, Russell KA (1998) Transformation. Methods Mol Biol 103: 27-39.
267. Braman J, Papworth C, Greener A (1996) Site-directed mutagenesis using doublestranded plasmid DNA templates. Methods Mol Biol 57: 31-44.
268. Feher Z, Kiss A, Venetianer P (1983) Expression of a bacterial modification methylase gene in yeast. Nature 302: 266-268.
269. Proffitt JH, Davie JR, Swinton D, Hattman S (1984) 5-Methylcytosine is not detectable in Saccharomyces cerevisiae DNA. Mol Cell Biol 4: 985-988.
270. Hattman S, Kenny C, Berger L, Pratt K (1978) Comparative study of DNA methylation in three unicellular eucaryotes. J Bacteriol 135: 1156-1157.
271. Liu H, Naismith JH (2008) An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol. BMC Biotechnol 8: 91.
272. Stratagene Inc. QuikChange II XL Site-Directed Mutagenesis Kit Instruction Manual. Revision B.
273. Stratagene Inc. PfuUltra High-Fidelity DNA Polymerase Instruction Manual. Revision \#064001h.
274. Teo SH, Jackson SP (1997) Identification of Saccharomyces cerevisiae DNA ligase IV: involvement in DNA double-strand break repair. EMBO J 16: 4788-4795.
275. Romanos MA, Scorer CA, Clare JJ (1992) Foreign gene expression in yeast: a review. Yeast 8: 423-488.
276. Tate CG (2001) Overexpression of mammalian integral membrane proteins for structural studies. FEBS Letters 504: 94-98.
277. Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, et al. (2009) Supporting Online Material for Structure of P-Glycoprotein Reveals a Molecular Basis for PolySpecific Drug Binding. Science 323: 1718-1722.
278. Urbatsch IL, Gimi K, Wilke-Mounts S, Lerner-Marmarosh N, Rousseau ME, et al. (2001) Cysteines 431 and 1074 are responsible for inhibitory disulfide crosslinking between the two nucleotide-binding sites in human P-glycoprotein. J Biol Chem 276: 26980-26987.
279. Schmitt L, Benabdelhak H, Blight MA, Holland IB, Stubbs MT (2003) Crystal structure of the nucleotide-binding domain of the ABC-transporter haemolysin B: identification of a variable region within ABC helical domains. J Mol Biol 330: 333-342.
280. Ernst R, Klemm R, Schmitt L, Kuchler K (2005) Yeast ATP-binding cassette transporters: cellular cleaning pumps. Meth Enzymol 400: 460-484.
281. Holz C, Prinz B, Bolotina N, Sievert V, Bussow K, et al. (2003) Establishing the yeast Saccharomyces cerevisiae as a system for expression of human proteins on a proteome-scale. J Struct Funct Genomics 4: 97-108.
282. Aslanidis C, de Jong PJ (1990) Ligation-independent cloning of PCR products (LICPCR). Nucleic Acids Res 18: 6069-6074.
283. Geertsma ER, Poolman B (2007) High-throughput cloning and expression in recalcitrant bacteria. Nat Methods 4: 705-707.
284. Manivasakam P, Weber SC, McElver J, Schiestl RH (1995) Micro-homology mediated PCR targeting in Saccharomyces cerevisiae. Nucleic Acids Res 23: 2799-2800.
285. QuikChange II XL Site-Directed Mutagenesis Kit Instruction Manual. Revision D. Agilent Technologies Inc.

Abbreviations

```
    (k)bp (kilo) base pair
    A.U. arbitrary unit
    ABC ATP binding cassette
    ALD Adrenoleukodystrophy
    AOX1 Alcohol oxidase 1
    APS ammoniumperoxo-disulphate
    ATP adenosine triphosphate
    BCRP breast cancer resistance protein
    BRIC benign recurrent intrahepatic cholestasis
    BSA bovine serum albumine
    BSEP bile salt export pump
    CFTR cystic fibrosis transmembrane conductance regulator
    CIAP calf intestinal alkaline phosphatase
    cmc critical micellar concentration
        Ctrl control
    CYMAL 6-cyclohexylhexyl-beta-D-maltopyranoside
        dd. double-distilled
        DDM dodecyl maltopyranoside
        DJS Dubin-Johnson syndrome
        DM decyl maltopyranoside
        DMSO dimethyl sulfoxide
        DNA deoxyribonucleic acid
        dNTP deoxynucleotide triphosphate
        E. coli Escherichia coli
        EDTA ethylenediamine tetraacetic acid
        ER endoplasmic reticulum
        EtBr ethidium bromide
    eYFP enhanced yellow fluorescent protein
FOS-14 / -16 Fos-choline-14 / -16
    FXR farnesoid X receptor
        GOI gene of interest
        GTQ Gentechnik-Qualität
        h hour
        HCl hydrochloric acid
        HDL high density lipoprotein
        HEK human embryonal kidney
        HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
    HepG2 human hepatoma cell line
        His histidine
```

```
            HlyB hemolysin B
    HMG-CoA 3-hydroxy-3-methyIglutaryl-Coenzyme A
            HR homologous recombination
            HRP horseradish peroxidase
            IMAC immobilized metal ion affinity chromatography
            IPTG Isopropyl-beta-D-thiogalactoside
            LB lysogeny beoth
            MAPK mitogen-activated protein kinase
            MDCK Madin Darby canine kidney
    MDR1 / 3 multidrug resistance protein 1/3
            MFS major facilitator superfamily
            min minute
            mRNA messender RNA
            MRP2 multidrug resistance-associated protein 2
            MWCO molecular weight cut-off
            NBD nucleotide binding domain
                    nt nucleotide
            NTA nitrilotriacetic acid
            NTCP sodium (Na) taurocholate co-transporting polypeptide
            NTE N-terminal extension
            OABP oligo-adenylate binding protein
            OATP organic anion transporting polypeptide
            ORF open reading frame
                    Ori origin of replication
                        P pellet
                            P-gp P-glycoprotein
P. pastoris Pichia pastoris
            PC phosphatidylcholine
            PCR polymerase chain reaction
            PDR pleiotropic drug resistance
            PEG poly ethylene glycol
            PFIC progressive familiar intrahepatic cholestase
            Pfu Pyrococcus furiosus
            PKC protein kinase C
            PM plasma membrane
            Pmal plasma membrane ATPase I
            PNK polynucleotide kinase
            rpm revolutions per minute
            RT room temperature
                    RXR retinoic X receptor
S. cerevisiae Saccharomyces cerevisiae
```

```
            SBP subtrate binding protein
            SDM site-directed mutagenesis
    SDS sodium dodecyl sulphate
PAGE poly acrylamide gel electrophoresis
    SLC solute carrier
        SN supernatant
    TAP transporter associated with antigen processing
TBS(-T) Tris-buffered saline (-Tween)
    T(D)C tauro(deoxy)cholate
    TCA trichloroacetic acid
TEMED tetramethylethylenediamine
    TMD transmembrane domain
    Tris tris-(hydroxymethyl)-aminomethan
    UV ultraviolet
        V Volt
        v/v volume per volume
        w/v weight per volume
        wt wild type
        YFL your favourite locus
        YNB yeast nitrogen broth
        YPD yeast peptone dextrose
```


Danksagung

An vorderster Stelle danke ich Prof. Dr. Lutz Schmitt, der niemals den Glauben an dieses immer wieder von Frustrationen und unerwarteten Herausforderungen geprägte Projekt verloren hat und jedem seiner Doktoranden eine lückenlose Finanzierung klarmacht. Hut ab dafür! Sein Enthusiasmus für die Forschung hat die vorliegende Doktorarbeit erst ermöglicht. Und mich von Apple abhängig gemacht.

Ich danke weiter PD. Dr. Ulrich Schulte für die Übernahme des Koreferats, insbesondere aber für seine unnachgiebigen Fragen in unseren Institutsseminaren, die oft genug Gedankenanstöße waren und den Blick auf die großen Zusammenhänge gelenkt haben. Und uns Doktoranden oft genug Wissenslücken aufgezeigt haben. Uli! Dieses Jahr werd ich die Gartenschweinchen aus Ton wieder los beim Schrottwichteln!

Ein großes Dankeschön geht an Dr. Sander H. J. Smits für seine kontinuierliche Unterstützung und viele produktive und nervenaufreibende (BSEP hat zuerst meine, ich dann seine Nerven zerfasert) Diskussionen rund um mein Projekt. Vielen Dank dafür! und außerdem für das Korrekturlesen und Aufspüren vieler Sätze von epischer Länge in dieser Arbeit.

Ich möchte außerdem Dr. Verena Keitel, Dr. Claudia Stross und Prof. Dr. Ralf Kubitz herzlich danken für die Unterstützung, die sie mir als unsere Kooperationspartner im SFB575 zuteil werden ließen: Western Blots auf Filmmaterial, Reagenzien und Konstrukte sowie Transfektionen und Fluoreszenzmikroskopie.

Besonderer Dank für fünf produktive Jahre Ausnahmezustand gilt allen meinen Kolleginnen und Kollegen: von der Aufreinigung eines Proteins bis zu der Gewissheit, daß ein Edding nicht sicherer in der eigenen Schublade liegt als ein Eppiständer, habe ich einiges von Euch lernen können. André, Britta, Marianne, Martina, Nacera, Nils, Ninotschka, Patrick, Petra, Philipp, Robert, Silke und Silke, Stefan, Susanne, Rakesh (science and cuisine in personal union), Tatuschka, Veronique, und Prof. em. Dr. Manfred Grieshaber: Dank Euch allen für so manche Hilfe, gute Kritik und das Miteinander inner- und außerhalb des Mikrokosmos Institut. Mitge- und ertragen haben diesen Ausnahmezustand auch Freunde von "draußen", die trotz eines "Lebens für die Forschung" gottseidank noch so zahlreich sind, daß ich sie hier nicht aufzählen kann.

Dr. rer. nat. Petra Küppers: großen Respekt für die von Dir an dem PDR5-Projekt geleistete Arbeit! Da hab ich noch einiges lernen können. Vielen Dank auch an Dich für das Durchsehen der Arbeit sowie Deinen Input in privaten wie projektgebundenen Diskussionen, in denen unsere Sicht der Dinge oft gleich war, doch die Kommunikation wie zwei parallele Linien: gleicher Natur, doch erst im Unendlichen konvergierend.

An Marianne Kluth und Philipp Ellinger geht besonderer Dank für den Fleiß und die Mühe, die beide in dieses Projekt im Rahmen ihrer Bachelorarbeit haben fließen lassen. Ich bin sicher, daß beide auf ihrem jeweiligen Forschungsweg weiterhin sehr erfolgreich sein werden. Marianne, Du hast tapfer mit mir gegen MDR3 gekämpft und gewonnen! Ein ganz expliziter Dank an Philipp, der nach seinem USA-Aufenthalt zurückkam, um in seiner Masterund derzeit Doktorarbeit weiter die Reihen im Kampf gegen die menschliche Leber (und ihr ABC-Transporterrepertoire) zu stärken, für viele Diskussionen und Denkrunden als Masterstudent, in denen er sich so manche ausschweifende Satzgefüge aus meinem Mund anzuhören nicht zu schade war. Das Resultat waren immer häufiger wissenschaftliche Debatten, in denen die glänzenden Degen des Halbwissens aufeinanderprallten, um oft genug festzustellen, daß ein Gefecht nicht lohnt, wenn man die Waffe nicht beherrscht. So wurden aus uns beiden Wissenschaftler. "Challenge", Dir gehört jetzt die Zukunft!

Die wichtigste Danksagung aber kommt zuletzt: die an meine Familie. Dieser Dank gebührt ganz besonders meiner Mutter Karin und meinem Vater Klaus, die mich stets in allen Belangen unterstützt und mir in vielen Dingen den Rücken freigehalten haben. Birte, Thomas, Tanja und jüngst auch Paul, Ihr habt mich, jeder auf seine Weise, immer wieder auf den Boden der Tatsachen zurückgeholt, wenn mein Dasein zu "akademisch" wurde. Dank Euch dafür, daß wir als Familie immer zusammengestanden haben.

Erklärung

Hiermit erkläre ich, daß ich die vorliegende Arbeit selbständig verfaßt und nur die angegebenen Hilfsmittel benutzt habe. Diese Arbeit wurde an keiner anderen Fakultät eingereicht oder anderweitig veröffentlicht.

Düsseldorf, den 15.11.2010

Jan Stindt

Lebenslauf

Persönliche Daten

Geboren am
Familienstand
Nationalität
13.1.1978 in Kiel
ledig
deutsch

Hochschulausbildung

Seit 2007

2005

Dezember 2004

WS2000-SS2004

WS1998-SS2000

1997-1998

Schulausbildung

1988-1997
1984-1988

Mitglied des Integrierten Graduiertenkollegs im SFB575 "Experimentelle Hepatologie" (Teilprojekt A9 - In vitro Charakterisierung von ABC Transportern der humanen Leber)

Beginn der Promotion im Institut für Biochemie - Arbeitsgruppe Membrantransport an der Heinrich Heine Universität Düsseldorf bei Prof. Dr. Lutz Schmitt Thema: "Molekulare Analyse von ABC-Transportern der humanen Leber"

Abschluss zum Diplombiologen an der Freien Universität Berlin. Thema der Diplomarbeit: "Analyse des peptide loading complex (PLC) in HCMV-infizierten humanen Fibroblasten"

Haupstudium Biologie an der Freien Universität Berlin. Arbeit als studentische Hilskraft im Institut für Neurobiologie. Mehrmonatige freie Mitarbeiten am Institut für angewandte Genetik, Institut für Mikrobiologie und Robert Koch Institut. Arbeit als Tutor im Institut für Pflanzenphysiologie (2001-2004)

Grundstudium Biologie an der Georg August Universität Göttingen. Arbeit als studentische Hilfskraft am Institut für Anthropologie und am Institut für Palynologie und Quartärwissenschaften

Zivildienst bei der Arbeiterwohlfahrt e.V. Kiel Hochschulreife)
Grundschule am Heidenberger Teich in Kiel

2009	Gordon Research Conference on "Multidrug Efflux Systems. Understanding And Overcoming Multi-Drug Efflux Pumps In Disease". Galveston, Texas, USA Registration Fee Reimbursement Grant Poster: Jan Stindt, Petra Kueppers, Sander H.J. Smits and Lutz Schmitt. "Homologous and heterologous overexpression of PDR and MDR Efflux pumps in yeast"
2008	Konferenz des SFB575 "Regenerative Hepatology". Düsseldorf, Nordrhein-Westfalen. Short Talk: "In vitro characterization of human liver ABC transporters". Poster: Jan Stindt, Petra Küppers and Lutz Schmitt. "A system for overexpression of eukaryotic membrane proteins".
2008	FEMS Young Scientist Meeting Grant (YSMG) 2nd FEBS Special Meeting Co-sponsored by FEMS "ATP Binding Cassette (ABC) Transporter Proteins: From Multidrug Resistance to Genetic Diseases". Innsbruck, Österreich Poster: Jan Stindt, Petra Kueppers, Robert Ernst and Lutz Schmitt. "Homologous and heterologous overexpression of eukaryotic membrane proteins in yeast"
2007	58. Mosbacher Kolloquium "Protein and lipid sorting in health and disease". Mosbach, Baden-Württemberg Poster: Petra Küppers, Jan Stindt, Robert Ernst, Karl Kuchler and Lutz Schmitt. "Functional overexpression and characterization of the yeast ABC transporter Pdr5p"

Publikationen

Stindt J, Ellinger P, Stross C, Keitel V, Kubitz R, Häussinger D, Smits S H J, Schmitt L. Yeast as a Tool for Handling unstable DNA: Cloning, Expression and Mutagenesis of the Human Bile Salt Export Pump (ABCB11).
Manuscript in preparation
Kueppers P, Ernst R, Stindt J, Smits S H J, Kuchler K, Schmitt L. A TMD mutation changes ATPase activity and drug susceptibility in the yeast ABC transporter Pdr5. Manuscript in preparation

Halenius A, Hauka S, Dölken L, Stindt J, Reinhard H, Wiek C, Hanenberg H, Koszinowski U H, Momburg F, Hengel H. Human Cytomegalovirus Targets the MHC Class I Peptide Loading Complex (PLC) and Inhibits Tapasin Gene Transcription. Submitted

Ernst R, Kueppers P, Stindt J, Kuchler K, Schmitt L (2010) Multidrug efflux pumps: Substrate selection in ATP-binding cassette multidrug efflux pumps - first come, first served? FEBS Journal 277: 540-549.

Menzel R, Greggers U, Smith A, Berger S, Brandt R, Brunke S, Bundrock G, Huelse S, Pluempe T, Schaupp F, Schuettler E, Stach S, Stindt J, Stollhoff N, Watzl S (2005) Honey bees navigate according to a map-like spatial memory. Proc Natl Acad Sci U S A 102: 3040-3045.

